MODELING THE BUILDING BLOCKS OF WATER MASERS IN CEPHEUS A

L. Uscanga, J. Cantó, S. Curiel, J. M. Torrelles, and L. F. Rodríguez

Recent VLBA observations of water maser emission from the star-forming region Cepheus A have shown that this emission actually comes from a set of coherent features or "building blocks".

These building blocks are small linear structures of water maser spots that conform a larger configuration with a well-defined linear/arcuate shape. In small angular regions, the VLBA observations (Torrelles et al. 2001) show that:

- 1. The water maser spots form a well-defined linear chain in the plane of sky.
- 2. A single spectral line with a width of 0.5 to $1 \,\mathrm{km \, s^{-1}}$ in the flux density vs. velocity graph.
- 3. A coherent structure and a well-defined velocity gradient in the position-velocity diagrams.

 PSfrag replacements
 A conspicuous example of these results is the R5-a
 block containing the strongest maser spot of the entire region (~ 200 Jy beam⁻¹, see Figure 1).

This building block is modeled as a thin disk of radius r, and thickness h, of material flowing in the direction θ with a linear velocity gradient a. The observer is in the disk plane.

The following equation was used to express the intensity from each point of the disk at a given velocity:

$$I(v, y, z) = I_0 \exp \left\{ \int \kappa_0 e^{-(v - v_r)^2 / \Delta v^2} dx \right\},$$
 (1)

where the term in brackets is the optical depth and $v_{\rm r}$ is the radial velocity of the flow at the position (x,y). I_0 , κ_0 , and Δv are supposed homogeneous throughout the disk. Once the parameters are specified, we compute the flux density, F(v), and the coordinates of the emission centroid at velocity v, $y_{\rm c}(v)$ and $z_{\rm c}(v)$. The results are compared with the observed maser spots of the R5-a block (Figure 2).

REFERENCES

Torrelles, J. M., et al. 2001, ApJ, 560, 853

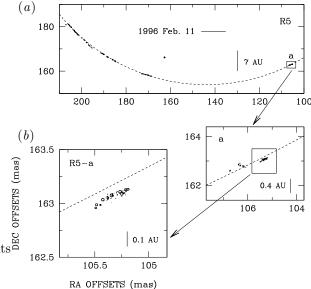


Fig. 1. (a) R5 water maser offset positions on 1996 February 11. The dash line shows the least-squares fitted circle. (b) Close-up of the R5-a block. The sizes of the circles are proportional to the maser spot intensity.

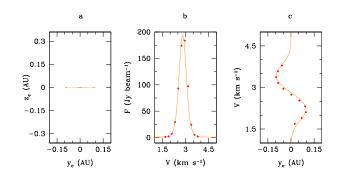


Fig. 2. (a) Emission centroid positions on the plane of the sky, (b) flux density as a function of velocity, and (c) position-velocity diagram: solid line—model, dots—observations. The observed positions are measured along an axis with position angle $\simeq -63^{\circ}$. The zero position corresponds to the geometrical center of the R5-a block. Model parameters: $I_0=2.25\,\mathrm{Jy\,beam^{-1}\,AU^{-2}},$ $\kappa_0=2.24\,\mathrm{AU^{-1}},~\Delta v=0.67\,\mathrm{km\,s^{-1}},~v_0=2.85\,\mathrm{km\,s^{-1}},$ $r=1.5\,\mathrm{AU},~h=0.15\,\mathrm{AU},~a=0.29\,\mathrm{km\,s^{-1}\,AU^{-1}},~\theta=9^{\circ}.$

¹Instituto de Astronomía, UNAM, Apdo. Postal 70-264, 04510 México, D.F., México (lucero@astroscu.unam.mx).

 $^{^2 {\}rm Institut}$ d'Estudis Espacials de Catalunya (IEEC/CSIC), Spain.

³Instituto de Astronomía, UNAM, Morelia, México.