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THE PARTITION BETWEEN TERMINAL SPEED AND MASS LOSS:

THIN, THICK, AND ROTATING LINE-DRIVEN WINDS

K. G. Gayley and A. J. Onifer

University of Iowa, USA

RESUMEN

Los vientos supersónicos en estado estacionario impulsados por ĺıneas contribuyen a la formación de las burbujas
en las regiones de formación estelar. La aportación clave a la burbuja en su fase de conservación de enerǵıa es el
flujo de enerǵıa cinética del viento, el cual involucra tanto la tasa de pérdida de masa como la velocidad terminal
del viento. Sin embargo, estas cantidades son parámetros autoconsistentes del proceso de impulso por ĺıneas y
por lo tanto se relacionan entre śı y con la profundidad óptica del viento resultante. Esta interrelación compleja
entre la profundidad óptica, la pérdida de masa y la velocidad del viento reside en el meollo de la teoŕıa de
los vientos impulsados por ĺıneas. Recurriendo a los éxitos y perspicacias de la teoŕıa “CAK”, transmitiré una
visión simplificada de como unir estos procesos por medio del concepto de la opacidad efectiva, con atención
a las consecuencias para las estructuras asféricas y formadas por vientos. Se discuten también las extensiones
recientes a los ambientes ópticamente gruesos no grises tales como los vientos de las estrellas Wolf-Rayet y las
supernovas.

ABSTRACT

Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming
regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which
involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent
parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This
complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind
theory. Drawing on the successes and insights of “CAK” theory, I will convey a simplified view of how to
unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical
nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-
Rayet winds and supernovae are also discussed.

Key Words: ISM: JETS AND OUTFLOWS — STARS: MASS LOSS — STARS: POST-MAIN SE-

QUENCE

1. INTRODUCTION

In the energy-conserving phase, the key input to
a wind-blown bubble is the kinetic energy flux of the
wind from the stellar engine. The purpose of this
theory review is to convey an understanding of the
processes that self-consistently determine the wind
mass-loss rate and its terminal speed. This will be
done essentially by repackaging the celebrated break-
throughs of CAK (Castor, Abbott, & Klein 1975)
into a more intuitive format that is suitable for ex-
tension to optically thick and rotating winds.

Specifically, since spherical symmetry will not in
general be assumed here, the key parameters to be
found are ṁ, the mass flux per unit area at the sub-
sonic surface of the star, and a, the local acceleration
of the wind. Both in general may depend on θ, the

angle from the axis of rotation. The global mass-loss
rate Ṁ is then given by the integral

Ṁ =

∫

S

dA ṁ , (1)

where S denotes the subsonic surface, and the ter-
minal speed v∞ can be found from

v∞ =

∫

dr
a(r, θ)

v(r, θ)
, (2)

integrated along the flow trajectory. Together, equa-
tions (1) and (2) may be used to determine the wind
kinetic energy flux.

The key assumptions are that the wind is driven
by radiative momentum intercepted by metals via
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212 GAYLEY & ONIFER

UV line scattering, and that the Sobolev approxi-
mation applies. These assumptions are interrelated
because of the extreme Doppler shifting in the su-
personic wind, which allows line opacity to be more
important than continuum opacity, and implies that
photon encounters with each line occur over such a
narrow region that the entire line encounter may be
treated as a single scattering event.

2. THE SOBOLEV OPTICAL DEPTH

The only parameter needed to determine whether
or not such a scattering will occur in line i is called
the Sobolev optical depth τi, and this is given by
the total optical depth encountered by a photon as
it redshifts across the line in the comoving frame. If
the redshift relative to line center is ν, and ds is the
pathlength increment, then

τi ∝

∫

ds ρ φ(ν) , (3)

where ρ is the density and φ(ν) gives the frequency
dependence of the cross section. Transforming to an
integral over Dopper shift and taking ρ and dv/ds to
be constant in the Sobolev approximation then gives

τi ∝ ρ

(

dv

ds

)

−1 ∫

dν φ(ν) ∝

( a

ṁ

)

−1

, (4)

assuming a steady-state mass flux so that ṁ = ρv.
Note the key simplification in the above is that
the frequency dependence of the cross section is
normalized so is independent of ρ and dv/ds, and
the steady-state acceleration along the flow obeys
a = v dv/ds.

The primary significance of the above derivation
is that the Sobolev optical depth varies only with
the ratio a/ṁ, the key local parameter pervading all
line-driven wind theory. The radiative acceleration
gi due to line i also depends on this parameter, since

gi =
∆Ṗ

∆m
, (5)

where ∆Ṗ is the rate of momentum deposition into
mass ∆m. If ∆v is the line-of-sight velocity width
spanned by ∆m, then ∆Ṗ ∝ ∆v, and furthermore
the probability that a given photon will scatter in
a line with Sobolev optical depth τi is 1 − e−τi ,
so ∆Ṗ ∝ (1 − e−τi)∆v. Also, ∆m ∝ ρ δs ∝

(a/ṁ)−1∆v, so

gi ∝

(

1 − e−τi

)

( a

ṁ

)

, (6)

from which we see that gi, like τi, depends on wind
parameters via the ratio a/ṁ.

3. THE SENSITIVITY PARAMETER α

The dependence of gi on a/ṁ provides the es-
sential feedback between the wind acceleration and
the line forces that provide it, and so it is useful to
quantify the sensitivity of this dependence via the
parameter

αi =
d ln gi

d ln(a/ṁ)
= 1 −

τie
−τi

(1 − e−τi)
. (7)

It is obvious that 0 < αi < 1, and larger τi yields
larger αi. The total line force is the sum over all the
important lines, so we write glines =

∑

i
gi and define

the total α parameter as

α =
d ln glines

d ln(a/ṁ)
= 1 −

∑

i
τie

−τi

∑

i
(1 − e−τi)

, (8)

which again obeys 0 < α < 1.
By itself, each αi has little significance because

the acceleration of O-star winds requires contribu-
tion from hundreds of lines. Lower density winds
require fewer lines and higher density more, but nev-
ertheless in most applications a large enough number
of lines contribute that it makes sense to use a sta-
tistical treatment of the line distribution. When this
is done, the above definition of α yields the same re-
sult as the more standard CAK line-list exponent α,
where the ionization gradients that give rise to the
CAK δ parameter are omitted here for simplicity.

Clearly
∑

i
τie

−τi may be interpreted as τthin, the
sum of the Sobolev optical depths of all thin lines,
while

∑

i
(1 − e−τi) is in effect the number of thick

lines. Thus we may supply the physical interpreta-
tion

α = 1 −

τthin

(Nthick + τthin)
, (9)

which also yields the interpretation α = gthick/glines

if we make the decomposition glines = gthick + gthin,
taking gthick ∝ Nthick and gthin ∝ τthin as follows
from the definition of glines. Thus the sensitivity
of glines to the wind response a/ṁ is simply gov-
erned by the fraction of glines provided by thick lines,
since thin lines already provide the maximum force
per unit mass independently of variations in their
Sobolev optical depths.

4. THE HYPERSONIC FORCE BALANCE

Ignoring gas pressure in the highly supersonic
winds of hot stars, the hypersonic force balance may
be written simply as

a = glines − g , (10)
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TERMINAL SPEED AND MASS LOSS 213

where g is the acceleration of effective gravity (i.e.,
the actual gravity corrected for centrifugal forces and
the radiative force on free electrons). When gas pres-
sure is neglected and glines is taken to depend entirely
on a/ṁ, a simple analysis shows that a maximal ṁ
exists such that no a solution is possible for larger
ṁ, and multiple a solutions exist for lesser ṁ. In
this simplified limit, the CAK “critical point” anal-
ysis reduces simply to the axiom that ṁ achieves
this maximum; indeed, other values have been found
to be unstable in numerous time-dependent simula-
tions.

This limit is easy to find analytically by deter-
mining the possible solutions to equation (10) for a
given any ṁ, and noting that the result obeys

d ln a

d ln ṁ
=

α(g + a)

[αg − (1 − α)a]
, (11)

which yields an infinite result when

a =
α

(1 − α)
g . (12)

Thus this is the acceleration near the surface when ṁ
achieves its maximum, for any increase in ṁ would
yield a bifurcation that would leave no accelerating
wind solution.

5. THE STEADY-STATE MASS FLUX

This constraint on the acceleration near the sur-
face in turn may be used to specify the value of
ṁ, which then becomes a constraint for finding the
steady-state a over the rest of the wind. This may
be accomplished by first determining the line-driven
acceleration gṁ=0 in the limit of small ṁ, which is
a simple limit because then all atoms experience the
full stellar continuum. The actual line-driven accel-
eration for any finite ṁ is then given by

glines =
(gthick + gthin)

gṁ=0

gṁ=0 = σ gṁ=0 , (13)

where the “self-shadowing parameter” σ accounts for
all the Sobolev optical depth effects and is given by

σ =
(Nthick + τthin)

τtotal

. (14)

The above follows because if ṁ = 0, all lines
are thin and τthin may be replaced by τtotal, the
total Sobolev optical depth of all the lines. Since
σ depends only on the Sobolev optical depths of
the lines, and this in turn depends on a/ṁ with
a = α g/(1 − α), one need merely adjust ṁ until σ

in equation (13) yields the required glines = (1−α) g
from equation (10).

Once ṁ is known at the lower boundary of the
wind, the geometry of the wind acceleration and
the local value of the wind speed constrain the lo-
cal wind density, and this in turn constrains the
Sobolev optical depths and the hypersonic force bal-
ance. For example, in spherical symmetry we have
simply ρ = ṁ/v, although stellar rotation compli-
cates this expression considerably.

The reason that ṁ is set near the surface is that
the line-driven radiative force is least efficient there,
owing to the local mismatch between the bright
hemispheric radiation field and the relatively slow
rate of Doppler shifting along oblique rays when the
wind speed is low and the velocity gradient is pri-
marily radial. Farther from the surface, the driving
efficiency grows and a decouples from its value at
the barely supersonic “choke point”, but the steady-
state mass-flux constraint continues to apply.

It is also interesting to note that the details of
the radiation field, its angular character and even
the total flux, do not appear in the constraint a =
α g/(1 − α); their influence is entirely absorbed into
gṁ=0. Thus the acceleration scale for a hypersonic
CAK-type wind is determined entirely by gravity
and the distribution of lines over line strength. In
the case of a power-law line list, as is implicit in the
CAK parametrization, the value of α depends on
neither ṁ nor a, because both τthin and Nthick in-
crease proportionately to each other as ṁ increases
or a decreases. The only way ṁ or a affect the line-
list properties is through the ionization balance, and
this is often treated by introducing a new parame-
ter δ which usually is of small importance and is not
included in this pedagogical description.

A final important point about the magnitude of
σ is that, for O stars, it is typically σ ∼ 10−3. This
means that each metal atom receives on the average
only about 0.1% of the continuum flux that it would
receive if it were not shadowed by its neighbors. This
in turn implies that if an increase in velocity is given
to a small-scale optically thin group of atoms, they
will experience reduced shadowing and the velocity
perturbation will grow yet more. Since σ ∼ 10−3,
this exponential instability will not saturate until the
acceleration grows by a factor of order 103, yielding
a very strong instability indeed. Numerical simu-
lations of this line-driven instability track the for-
mation of rarified regions and dense shells, implying
that a smoothly accelerated flow is formally impossi-
ble. Fortunately, the scale of the instability is small
enough that the global flow properties of the wind
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214 GAYLEY & ONIFER

continue to be surprisingly well described by smooth-
wind CAK theory.

6. FORCE LEVERAGING AND THE
DETERMINATION OF THE TERMINAL

SPEED

Once a = α g/(1 − α) is known at the lower
boundary of the wind, it is tempting to expect that
this proportion will remain fixed over the wind, since
both g and the radiative flux fall off like 1/r2. How-
ever, as mentioned above, the force efficiency in-
creases with radius, and these increases get further
“leveraged” by the feedback inherent in line driving.
This leveraging occurs because if the line force is in-
creased a small amount, then the acceleration will
also increase, but this will in turn reduce the degree
of self-shadowing so increase the σ factor and the
resulting line force. Thus increases in glines seed fur-
ther increases, and this feedback can substantially
“dress” seemingly unimportant changes in the force.

The degree of force leveraging may be quantified
by noting that if glines in equation (10) is increased
by an amount dg, then the new solution for a is al-
tered by an amount da, where da/dg is not unity but
rather

da

dg
=

1

(1 − α)

[

1 −

αg

(1 − α)a

]

−1

. (15)

This is the leveraging factor, and it is always at
least as large as 1/(1 − α) ∼ 3. Even more signifi-
cantly, close to the surface where a ∼= α g/(1 − α),
the leveraging factor is unbounded. Physically, this
is because changes in the driving force at the critical
point must increase the mass flux but, just above
the point where the mass flux is set, force increases
will instead increase the local acceleration.

Thus the net result of the expected increases in
force efficiency with radius is that gravity quickly
becomes almost negligible, and the resulting free
acceleration achieves kinetic energies that typically
exceed the gravitational lifting energy by an order
of magnitude or more (Gayley 2000). This “after-
burner” effect substantially enhances the kinetic en-
ergy input to the wind-blown bubble.

7. OPTICALLY THICK WINDS

When each UV continuum photon encounters
many lines as it diffuses through the wind, the radia-
tive environment is more isotropic. However, since
it is the force we are concerned with, we only need
odd moments of the radiation field. To lowest order
this is quite similar to the radiative flux, which is the

same in optically thick and thin winds due simply to
the radiative equilibrium constraint. Thus when the
opacity in thick winds is treated as effectively gray,
there is no fundamental difference between the driv-
ing of thick winds and thin winds in CAK theory; all
that is needed is additional opacity to explain why
Wolf-Rayet winds are so much denser than their O-
star progenitors.

On the other hand, gaps in the Wolf-Rayet spec-
trum, especially in the visible, present a challenge to
the driving efficiency because frequency redistribu-
tion will tend to channel flux into spectral regions
with longer mean-free-paths between line encoun-
ters. The impact of this process may be treated
approximately in the spirit of a Sobolev-modified
Rosseland mean opacity, and it is found that for
thick enough winds, the flux as a function of wave-
length will be inversely proportional to the line den-
sity in the vicinity of that wavelength. Thus to
support efficient driving in optically thick winds,
it is necessary to maintain fairly close spacing be-
tween optically thick lines over the majority of the
stellar continuum. Again, this is a challenge for
opacity modelers to make sure that not only are
enough strong lines present, but that they are suit-
ably spread over the spectrum. Recent advances sug-
gest that Wolf-Rayet winds may soon be explained
with essentially the same CAK-type line-driving for-
malism that is so successful for O stars.

8. STELLAR ROTATION AND RADIATIVE
TORQUE

The inclusion of stellar rotation breaks the radial
nature of the line driving process, since both the flux
and the opacity become nonradial, and so radiative
torques appear. These torques exist in both the axial
and poleward directions. The increased axial opacity
is in the retrograde direction due to the combination
of radial acceleration with azimuthal quasi-orbital
motion, and this causes an estimated 30% spindown
of the wind angular momentum (Gayley & Owocki
2000). Meanwhile, the increased poleward opacity,
due to the more rapid acceleration over the poles
where the effective gravity g is stronger, causes a
poleward deflection of the line force (Owocki, Cran-
mer, & Gayley 1998) that inhibits the formation
of rotationally induced equatorial disks called wind-
compressed disks (Bjorkman & Cassinelli 1993).

Other processes that also favor poleward wind
enhancements are the oblate shape of the rotating
star, which tilts poleward the surface normal and
the radiative flux, and von Zeipel-type gravity dark-
ening, which increases the radiative flux over the
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TERMINAL SPEED AND MASS LOSS 215

poles at the expense of the bloated equatorial re-
gion (Maeder & Meynet 2000). Since the winds are
radiatively driven, the combination of increased flux
at the poles and the poleward turning of the flux,
along with poleward line-opacity increases, favor pro-
late winds rather than disk formation (Owocki et al.
1998). This leaves as a puzzle the disk-like structures
observed around B and B[e] stars, and although vari-
ations of opacity with temperature may help recover
oblate structures (Lamers, Snow, & Lindholm 1995),
the problem of disk formation may require consider-
ation of interior physics quite separate from the wind
driving.

On the other hand, prolate structures are of-
ten seen in the nebulae around evolved stars. The
celebrated HST images of η Carinae, for example,
show clearly bipolar ejecta along with evidence for an
equatorial skirt. One popular model to explain this
involves interactions between the changing winds
emitted by the star as it evolves over time (Frank,
Ryu, & Davidson 1998; Langer, Garćıa-Segura, &
Mac Low 1999). As the stellar radius bloats up in
an LBV phase, the wind is expected to be slow, and
this should be followed by a much faster wind as
the star contracts and gets hotter. If the LBV wind
is equatorially enhanced, perhaps by opacity effects,
then the subsequent fast wind may be channeled
poleward by the circumstellar material, yielding a
bipolar nebula. Simulations support the plausibility
of this model, yet it is interesting to point out that
bipolar enhancements might also occur as a natu-
ral consequence of line driving from rapidly rotating
stars.

9. RADIATIVELY ASSISTED ROTATIONAL
BREAKUP

The most direct way to yield equatorial enhance-
ments is via critical rotation, at which point the
rapidly rotating star experiences a strong enough
centrifugal force to eject equatorial gas into orbit.
Interestingly, for extreme stellar luminosities, such
equatorial breakup may be preceded at lower rota-
tion rates by a wind-driven breakup that occurs pri-
marily at the poles, due to polar brightness enhance-
ments from gravity darkening. The potential for this
type of mechanism to yield bipolar nebulae has only
recently begun to be explored (Maeder & Meynet
2000).

A key issue in the analysis of the mass loss from
gravity darkened stars is how the volume of the star
responds to the rotation and the radiation. Gen-
erally speaking, the more the equator-to-pole aspect

Fig. 1. The factor by which the line-driven mass-loss

rate is enhanced for a star approaching critical rotation,

as a function of the Eddington parameter Γ. Results

are shown for α = 0.4, 0.5, 0.6, 0.7, and 0.8, where the

smaller the α the greater the mass-loss enhancement.

ratio approaches its maximal value of 3/2 due to cen-
trifugal forces, the closer the star gets to equatorial
breakup, whereas the more the polar radius puffs
out due to the enhanced polar radiation, the closer
the star gets to radiatively driven bipolar breakup.
Advances in interior models are now constraining the
volume, shape, and total luminosity of rapidly rotat-
ing stars, and Figure 1 gives the global line-driven
mass-loss ratio between a critically rotating rigid star
and a nonrotating star with the same luminosity and
polar radius. Note that the rapidly rotating mass-
loss rate may become extremely large if Γ > 0.64, in
agreement with Maeder (1999).

10. CONTINUUM-DRIVEN WINDS

LBV models often invoke super-Eddington lumi-
nosities to yield extremely dense winds driven by
continuum opacity. Continuum opacity can only
drive a wind at all when the Eddington parameter
exceeds unity, since it lacks the self-regulation of line
driving. For continuum driving, if the force exceeds
gravity at some density, it will exceed gravity at all
densities until the continuum opacity itself changes.
Thus very high density winds, such as LBVs, may
be driven, and the only ultimate limit is the energy
content of the driving radiation.

Since continuum-driven winds have no self-
consistent feedback mechanism to determine the
mass-loss rate, the only constraint is that the ra-
diative flux must be capable of lifting the mass
through the gravitational potential. This constrains
their response to gravity darkening and centrifu-
gal forces in the presence of rapid stellar rotation.
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Even near critical rotation, the surface kinetic en-
ergy is at most half the gravitational escape en-
ergy, so substantial energy input will still be nec-
essary to drive the wind to infinity, and to within
a factor of two the maximum allowable local mass
flux density will be proportional to the local radia-
tive flux density. Since the local radiative flux is
also proportional to the effective gravity, this yields
nearly the same dependence as for CAK-type winds,
and again prolate flows are to be expected. On the
other hand, when rapid rotation induces the required
“super-Eddington” radiative flux needed for contin-
uum driving, it may be very efficient at lifting criti-
cally rotating material into orbit around, as opposed
to escaping from, the star.

However, it has been argued by Shaviv (2001)
that such super-Eddington winds are unstable to
clumping, and the radiative flux will then flow
through gaps between the clumps, reducing the
average driving efficiency to sub-Eddington levels.
Thus the Eddington luminosity may be exceeded
without breaking apart the star, and the inherently
inhomogeneous winds driven in this situation would
be efficient at converting radiative momentum
but not radiative energy to the bulk wind flow.
Thus if stellar rotation and gravity darkening
create locally super-Eddington radiation fields, the
response of the star may be quite complicated and
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self-consistent models may need to resolve small-
scale inhomogeneities. Clearly, the combination of
stellar rotation and mass loss yields theoretical chal-
lenges that we have only begun to address, but
the current revolution in observational imaging and
spectroscopy makes this a timely topic for sweeping
advances.
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