UNVEILING THE STRUCTURE OF THE PLANETARY NEBULA M 2-48

L. López-Martín,¹ C. Esteban,² J. A. López,¹ R. Vázquez,¹ A. C. Raga,¹ L. F. Miranda,³ J. M. Torrelles,⁴ L. Olguín¹ and J. Meaburn⁵

The PN M2-48 is formed by three main structures, namely, a bipolar central region (CR), a set of knots tracing a semicircular shell surrounding CR, and two symmetric bow-shocks. CR shows a kinematic structure corresponding to a bipolar shell, with an expansion velocity of $\simeq 50 \,\mathrm{km \, s^{-1}}$. The semicircular shell appears to be expanding at $\simeq 20 \,\mathrm{km \, s^{-1}}$, except in the regions aligned with the bow-shocks, which are interpreted as jet-shell interaction zones at $\simeq 100 \,\mathrm{km \, s^{-1}}$. Finally, the bow-shocks have uncorrected velocities of $\simeq 80 \,\mathrm{km \, s^{-1}}$. An inclination angle of 10° with respect to the plane of the sky is estimated using simple bow shock models.

High-dispersion (HD) spectroscopy was obtained in 1999, June 29 and 30, with the spectrometer MES (Meaburn et al. 1984) attached to the 2.1-m OAN telescope. A 90 Å bandwidth filter was used to isolate the 87th order, containing H α and [N II] $\lambda\lambda$ 6548, 6584 lines.

In Figure 1, the slit positions A-F are shown against a contour map of a [N II] 6584 image. The 150 μ m wide (= 10 km s⁻¹) slit was oriented East-West (A-D) and North-South (E-F). The exposure times were of 1800s for each slit position. The spectra were wavelength calibrated to an accuracy of $\pm 1 \,\mathrm{km \, s^{-1}}$.

An array of [N II] 6584 Å position-velocity (PV) maps, formed by the HD spectra (slits A-D), is shown in Figure 2. The complex kinematics of the main components of M 4-18 is evident, even revealing some features which were not detected previously.

The main results of our work are:

- 1. The bright central bipolar region presents a heliocentric expansion velocity of 50 km s⁻¹.
- 2. We propose that the knots around the bipolar core are forming two slow expanding arcs.
- 3. We confirm that the structure s1 is the interaction of an outflow with the east arc.

Fig. 1. The slit positions A-F are marked against a grayscale representation and contours of the [N II] emission of M 2-48.

Fig. 2. Gray-scale representation of the PV arrays of [N II] 6584 Å along slits A-D. The different features are labeled following Vázquez et al. (2000).

4. We detect a bow-shock, B1, at $\approx 2'$ of the bipolar core. The symmetrical counterpart is only marginally detected.

REFERENCES

- Meaburn, J., Blundell, B., Carling, R., et al. 1984, MN-RAS, 210, 463
- Vázquez, R., López-Martín, L., Miranda, et al. 2000, A&A, 357, 1031

¹Instituto de Astronomía, UNAM, México.

²Instituto de Astrofísica de Canarias.

³Instituto de Astrofísica de Andalucía, CSIC.

⁴Institut d'Estudis Espacials de Catalunya and CSIC.

⁵Department of Physics and Astronomy, U. of Manchester.