THE ONSET OF PHOTOIONIZATION IN POST-AGB STARS

A. Manchado, ¹ C. Domínguez-Tagle, ¹ A. García-Hernández, ¹ F. Prada, ² P. García-Lario, ³ and G. Conway ⁴

During the post-AGB phase the dust shell detaches from the central star and dust temperatures varies between 100 and 200 K. In order to study the onset of photo-ionization in post-AGB stars, IRSPEC near-infrared spectroscopy of 40 IRAS sources from the Point Source Catalogue was conducted. In 27 of the post-AGB observed Br γ is detected. In addition, molecular emission lines of H₂ 1–0 S(1) and 2–1 S(1) were detected in 11 objects. The observations show that all the sources but one, with molecular emission, exhibit photo-ionization. A detailed description and discussion of the results are presented.

The objects presented here were first identified as post-AGB stars through near-infrared photometry (Manchado et al. 1989; García-Lario et al. 1997). Five of these objects exhibiting $\rm H_2$ emission have been observed with the HST (WFPC2), and they show bipolar morphology. Detailed descriptions of the object's images can be found in Sahai, Bujarrabal, & Zijlstra (1999); Hrivnak, Kwok, & Su (1999); Bobrowsky et al. (1998) and García-Lario, Riera, & Manchado (1999).

The Br γ emission line (2.166 μ m) was detected in 27 IRAS sources. The H₂ 1–0 S(1) emission line (2.122 μ m) was detected in 10 of the objects showing Br γ emission and in one object that does not show Br γ . From those 10 objects, 6 were also detected in the H₂ 2–1 S(1) emission line (2.248 μ m). In addition, v=2–0 CO emission (2.293 μ m) was detected in 3 of the 20 objects observed.

The integrated fluxes in Br γ , H₂ 1–0 S(1), and H₂ 2–1 S(1) (not corrected for extinction) have been calculated with an estimated uncertainty of 10%.

TABLE 1
OBSERVED LINE RATIOS

Object	$\frac{\text{H}_2 1 - 0 S(1)}{\text{Br} \gamma}$	$\frac{\text{H}_2 1 0 S(1)}{\text{H}_2 2 1 S(1)}$
IRAS 06556	0.1	≤ 1.7
IRAS 06562	0.1	3.3
IRAS 07027	0.2	≤ 1.2
IRAS 10178	1.4	24.8
IRAS 10197	0.4	≤ 2.7
IRAS 14331	3.1	7.9
IRAS 16594	5.8	31.0
IRAS 17119	0.1	1.3
IRAS 17150		≤ 10.5
IRAS 17311	19.9	10.2
IRAS 18062	4.8	• • •

The $\rm H_2$ 1–0 S(1)/2–1 S(1) ratio vary from 1 to 31 with an uncertainty of approximately 20%. An upper limit of the flux was estimated when the $\rm H_2$ 2–1 S(1) line was not detected. Calculated $\rm H_2$ 1–0 $S(1)/\rm Br\gamma$ ratios vary from 0.1 to 5.8 (with the exception of IRAS 17311, for which the ratio is 19.9) indicating different evolutionary stages.

REFERENCES

Bobrowsky, M., Sahu, K. C., Parthasarathy, M., & García-Lario, P. 1998, Nature, 392, 469

García-Lario, P., Manchado, A., Parthasarathy, M.,
Pych, W., & Pottasch, S. R. 1997, A&AS, 126, 479
García-Lario, P., Riera, A., & Manchado, A. 1999, ApJ,
526, 854

Hrivnak, B. J., Kwok, S., & Su, K. 1999, ApJ, 524, 849
Manchado, A., Pottasch, S. R., García-Lario, P., Esteban, C., & Mampaso, A. 1989, A&A, 214, 139

Sahai, R., Bujarrabal, V., & Zijlstra, A. 1999, ApJ, 518, L115

 $^{^1 {\}rm Instituto}$ de Astrofísica de Canarias, E
–38200, La Laguna, España.

 $^{^2\}mathrm{Centro}$ Astronómico Hispano–Alemán, E–04080, Almería, España.

³ISO Data Centre, Astrophysics Division, ESA, E–28080, Madrid, España.

⁴Dept. of Physics and Astronomy, University of Calgary, Alberta T2N 1N4, Canada.