


Fortran

Subroutines for

Mathematical

Applications

Math/Library
Special Functions

Quick Tips on How to Use this Online Manual

Click to display only the page.

Click to display both bookmark
and the page.

Click to display both thumbnails
and the page.

Click and drag to page to magnify
the view.

Click to go to the first page.

Click and drag to the page to select text.

Click and drag to page to reduce the view.

Click to go to the last page.

Click to go back to the previous view and
page from which you jumped.

Click to return to the next view.

Click to view the page at 100% zoom.

Click to fit the entire page within the
window.

Click to fit the page width inside the
window.

Click to find part of a word, a complete
word, or multiple words in a active
document.

Double-click to jump to a topic
when the bookmarks are displayed.

Click to jump to a topic when the
bookmarks are displayed.

Click to go to the next page.

Click to go back to the previous page
from which you jumped.

Click and use to drag the page in vertical
direction and to select items on the page.

Printing an online file: Select Print from the File menu to print an online file. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 1 in the on-line documentation ends on page 317 and Chapter 2 begins on page 319.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document. A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the button and drag to select and copy text.

Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows: Drag the double-headed arrow that appears on the area’s border as you
pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button that appears on the area’s border at the
bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color
text to indicate that you can jump to them. To return to the page from which you jumped, click the return
back icon on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
previous zoom view(s) before returning to the page from which you jumped.

Let’s try it, click on the following green color text: Chapter 1: Elementary Functions

If you clicked on the green color in the example above, Chapter 1: Elementary Functions opened.
To return to this page, click the on the toolbar.

Visual Numerics, Inc.
Corporate Headquarters
9990 Richmond Avenue, Suite 400
Houston, Texas 77042-4548
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics International Ltd.
New Tithe Court
23 Datchet Road
SLOUGH, Berkshire SL3 7LL
UNITED KINGDOM

PHONE: +44 (0) 1753-790600
FAX: +44 (0) 1753-790601
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles
F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics, Inc.
6230 Lookout Road
Boulder, Colorado 80301
USA

PHONE: 303-530-9000
FAX: 303-530-9329
e-mail: info@boulder.vni.com

Visual Numerics International GmbH
Zettachring 10, D-70567
Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 113

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics S. A. de C. V.
Cerrada de Berna #3
Tercer Piso Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: leevni@chollian.dacom.co.kr

COPYRIGHT NOTICE: Copyright 1994, by Visual Numerics, Inc.

The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of
Visual Numerics, Inc.

Restricted Rights Legend

Use, duplication or disclosure by the US Government is subject to restrictions as set forth in FAR 52.227-19, subparagraph (c) (l) (ii)
of DOD FAR SUPP 252.227-7013, or the equivalent government clause for agencies.

Restricted Rights Notice: The version of the IMSL Numerical Libraries described in this document is sold under a per-machine
license agreement. Its use, duplication, and disclosure are subject to the restrictions on the license agreement.

IMSL Fortran and C
Application Development Tools

Visual Numerics, Inc.
Corporate Headquarters
9990 Richmond Avenue, Suite 400
Houston, Texas 77042-4548
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL
RG12 1YQ
UNITED KINGDOM

PHONE: +44 (0) 1344-311300
FAX: +44 (0) 1344-311377
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles
F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Cerrada de Berna #3
Tercer Piso Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics International GmbH
Zettachring 10, D-70567
Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 113

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: leevni@chollian.dacom.co.kr

COPYRIGHT NOTICE: Copyright 1997, by Visual Numerics, Inc.

The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect damages
in connection with the furnishing, performance, or use of this material.

All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of
Visual Numerics, Inc.

Restricted Rights Legend
Use, duplication or disclosure by the US Government is subject to restrictions as set forth in FAR 52.227-19, subparagraph (c) (l) (ii) of
DOD FAR SUPP 252.227-7013, or the equivalent government clause for agencies.

Restricted Rights Notice: The version of the IMSL Numerical Libraries described in this document is sold under a per-machine license
agreement. Its use, duplication, and disclosure are subject to the restrictions on the license agreement.

IMSL Fortran and C
Application Development Tools

Math Library
Special Functions

 Version Revision History Year Part Number

1.0 Original Issue 1984 IMSL-SFUN-0001

1.1 Fixed bugs and added significant
changes to functionality.

1986 IMSL-SFUN-001.1

2.1 Added routines to enhance
functionality.

1991 SFLB-USM-UNBND-EN8901-.21

3.0 No changes were made / reprint only 1994 5111A

IMSL

Fortran
Subroutines for
Mathematical
Applications

IMSL MATH/LIBRARY Special Functions Contents • i

 Click here to go to F77/Math/Library Click here to go to F77/Stat Vol. 1/Library

 Click here to go to F90 MP Library Click here to go to F77/Stat Vol. 2/Library

Contents

Introduction iii

Chapter 1: Elementary Functions 1

Chapter 2: Trigonometric and Hyperbolic Functions 9

Chapter 3: Exponential Integrals and Related Functions 27

Chapter 4: Gamma Function and Related Functions 41

Chapter 5: Error Function and Related Functions 69

Chapter 6: Bessel Functions 83

Chapter 7: Kelvin Functions 119

Chapter 8: Airy Functions 133

Chapter 9: Elliptic Integrals 143

Chapter 10: Elliptic and Related Functions 153

Chapter 11: Probability Distribution Functions and Inverses 167

Chapter 12: Mathieu Functions 217

Chapter 13: Miscellaneous Functions 227

ii • Contents IMSL MATH/LIBRARY Special Functions

Reference Material 233

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Index i

Product Support v

IMSL MATH/LIBRARY Special Functions Introduction • iii

Introduction

The IMSL Libraries
The IMSL Libraries consist of two separate, but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

• MATH/LIBRARY general applied mathematics and special functions

• STAT/LIBRARY statistics

The IMSL MATH/LIBRARY User’s Manual has two parts: MATH/LIBRARY and
MATH/LIBRARY Special Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from personal computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the letter “Z” and, occasionally, “DC.”

Getting Started
IMSL MATH/LIBRARY Special Functions is a collection of FORTRAN
subroutines and functions useful in research and statistical analysis. Each routine
is designed and documented to be used in research activities as well as by
technical specialists.

To use any of these routines, you must write a program in FORTRAN (or
possibly some other language) to call the MATH/LIBRARY Special Functions
routine. Each routine conforms to established conventions in programming and
documentation. We give first priority in development to efficient algorithms,
clear documentation, and accurate results. The uniform design of the routines
makes it easy to use more than one routine in a given application. Also, you will
find that the design consistency enables you to apply your experience with one
MATH/LIBRARY Special Functions routine to all other IMSL routines that you
use.

iv • Introduction IMSL MATH/LIBRARY Special Functions

Finding the Right Routine
The organization of IMSL MATH/LIBRARY Special Functions closely parallels
that of the National Bureau of Standards’ Handbook of Mathematical Functions ,
edited by Abramowitz and Stegun (1964). Corresponding to the NBS Handbook,
functions are arranged into separate chapters, such as elementary functions,
trigonometric and hyperbolic functions, exponential integrals, gamma function
and related functions, and Bessel functions. To locate the right routine for a given
problem, you may use either the table of contents located in each chapter
introduction, or one of the indexes at the end of this manual. GAMS index uses
GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and J.L.
Springmann 1990, Guide to Available Mathematical Software , National Institute
of Standards and Technology NISTIR 90-4237). Use the GAMS index to locate
which MATH/LIBRARY Special Functions routines pertain to a particular topic
or problem.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. You
will find all information pertaining to IMSL MATH/LIBRARY Special Functions
in this manual. Moreover, all information pertaining to a particular routine is in
one place within a chapter. Each chapter begins with a table of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information.

• IMSL Routine Name

• Purpose: a statement of the purpose of the routine

• Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:
– CALL sub(argument-list) for subroutines
– fun(argument-list) for functions

• Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

IMSL MATH/LIBRARY Special Functions Introduction • v

Output No initialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

• Remarks: details pertaining to code usage and workspace allocation

• Algorithm: a description of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

• Programming notes: an optional section that contains programming details not
covered elsewhere

• Example: at least one application of this routine showing input and required
dimension and type statements

• Output: results from the example(s)

• References: periodicals and books with details of algorithm development

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available
in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins
with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a letter “S” or “A” is used as a prefix. Where possible, we use the letter
“C” as a prefix to denote a routine that returns (or accepts) arguments of complex
type and the letters “Z” or “DC” for double complex type. For example, the
following pairs are names of routines in the two different precisions: ERF/DERF
(the root is ERF, for “error function”), ANORDF/DNORDF (the root is NORDF, for
“normal distribution function”), and AKER0/DKER0 (the root is KER0, which is the
designation of the modified Kelvin function of order 0). The use of the prefix “C”
is illustrated by CWPL/ZWPL (the root is WPL, for “Wierstrass P-function,
lemniscatic case”).

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the letters “I” through
“N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION,
depending on the precision of the routine.

When writing programs accessing IMSL MATH/LIBRARY Special Functions,
the user should choose FORTRAN names that do not conflict with names of
IMSL subroutines, functions, or named common blocks. The careful user can
avoid any conflicts with IMSL names if, in choosing names, the following rules
are observed:

• Do not choose a name that appears in the Alphabetical Summary of Routines, at
the end of the User’s Manual.

vi • Introduction IMSL MATH/LIBRARY Special Functions

• Do not choose a name consisting of more than three characters with a numeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions
In general, the IMSL MATH/LIBRARY Special Functions codes are written so
that computations are not affected by underflow, provided the system (hardware
or software) places a zero value in the register. In this case, system error
messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

The routines in IMSL MATH/LIBRARY Special Functions make use of only a
few machine constants at run time to initialize various parameters to the particular
machine on which they are executing. These machine constants, the most
important of which are two machine epsilons and the smallest and largest
machine-representable positive numbers, are obtained from three machine-
constants routines that have been tailored specifically to the environment in which
MATH/LIBRARY Special Functions is being used. Because you may wish to use
these routines in your own applications, they are fully discussed in the Reference
Material. IMSL MATH/LIBRARY Special Functions does not contain any of the
intrinsic functions that are defined to be part of the FORTRAN 77 standard
(1978, American National Standard Programming Language FORTRAN,
published by American National Standards Institute, New York). Certain local
implementations of the FORTRAN compiler may include intrinsic functions in
addition to those in the ANSI standard that may also be in MATH/LIBRARY
Special Functions. You can check your compiler manual and the table of contents
to see if there are any other routines in common.

IMSL MATH/LIBRARY Special Functions Introduction • vii

Error Handling
The routines in IMSL MATH/LIBRARY Special Functions attempt to detect and
report errors and invalid input. Errors are classified and are assigned a code
number. By default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause
program execution to stop. The severity level as well as the general nature of the
error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.

Work Arrays
A few routines in the IMSL MATH/LIBRARY Special Functions require work
arrays. On most systems, the workspace allocation is handled transparently, but
on some systems, workspace is obtained from a large array in a COMMON block.
On these systems, when you have a very large problem, the default workspace
may be too small. The routine will print a message telling you the statements to
insert in your program in order to provide the needed space (using the common
block WORKSP for integer or real numbers, or the common block WKSPCH for
characters). The routine will then automatically halt execution. See “Automatic
Workspace Allocation” in the Reference Material for details on common block
names and default sizes. For each routine that uses workspace, a second routine is
available that allows you to provide the workspace explicitly. For example, the
routine BSJS (page 103) uses workspace and automatically allocates the required
amount, if available. The routine B2JS does the same as BSJS but has a work
array in its argument list, which the user must declare to be of appropriate size.
The “Automatic Workspace Allocation” section in the Reference Material
contains further details on this subject.

Printing Results
None of the routines in IMSL MATH/LIBRARY Special Functions print results
(but error messages may be printed). The output is returned in FORTRAN
variables, and you can print these yourself.

The IMSL routine UMACH (page 242) retrieves the FORTRAN device unit number
for printing. Because this routine obtains device unit numbers, it can be used to
redirect the input or output. The section on “Machine-Dependent Constants” in
the Reference Material contains a description of the routine UMACH.

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions • 1

Chapter 1: Elementary Functions

Routines
Evaluate the argument of a complex number CARG 1
Evaluate the cube root of a real number x3 CBRT 2

Evaluate the cube root of a complex number z3 CCBRT 3

Evaluate (e[– 1)/x for real x .. EXPRL 4

Evaluate (e] – 1)/z for complex z CEXPRL 5
Evaluate the complex base 10 logarithm, log10 zCLOG10 6
Evaluate ln(x + 1) for real x ..ALNREL 6
Evaluate ln(z + 1) for complex z...CLNREL 7

Usage Notes
The “relative” functions EXPRL (page 4) and CEXPRL (page 5) are useful for

accurately computing e[− 1 near x = 0. Computing e[− 1 using EXP(X) − 1 near
x = 0 is subject to large cancellation errors.

Similarly, ALNREL (page 6) and CLNREL (page 7) can be used to accurately
compute ln(x + 1) near x = 0. Using the routine ALOG to compute ln(x + 1) near
x = 0 is subject to large cancellation errors in the computation of 1 + X.

CARG/ZARG (Single/Double precision)
Evaluate the argument of a complex number.

Usage
CARG(Z)

Arguments

Z — Complex number for which the argument is to be evaluated. (Input)

2 • Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

CARG — Function value. (Output)
If z = x + iy, then arctan(y/x) is returned except when both x and y are zero. In this
case, zero is returned.

Algorithm

Arg(z) is the angle θ in the polar representation z = |z| eL�q, where

i = −1

If z = x + iy, then θ = tan-1(y/x) except when both x and y are zero. In this case, θ
is defined to be zero.

Example

In this example, Arg(1 + i) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL CARG, VALUE
 COMPLEX Z
 EXTERNAL CARG, UMACH
C Compute
 Z = (1.0, 1.0)
 VALUE = CARG(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CARG(’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
CARG(1.000, 1.000) = 0.785

CBRT/DCBRT (Single/Double precision)
Evaluate the cube root.

Usage
CBRT(X)

Arguments

X — Argument for which the cube root is desired. (Input)

CBRT — Function value. (Output)

Algorithm

The function CBRT(X) evaluates x1/3. All arguments are legal.

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions • 3

Example

In this example, the cube root of 3.45 is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL CBRT, VALUE, X
 EXTERNAL CBRT, UMACH
C Compute
 X = 3.45
 VALUE = CBRT(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ CBRT(’, F6.3, ’) = ’, F6.3)
 END

Output
CBRT(3.450) = 1.511

CCBRT/ZCBRT (Single/Double precision)
Evaluate the complex cube root.

Usage
CCBRT(Z)

Arguments

Z — Complex argument for which the cube root is desired. (Input)

CCBRT — Complex function value. (Output)

Comments

The branch cut for the cube root is taken along the negative real axis. The
argument of the result, therefore, is greater than –π/3 and less than or equal to
π/3. The other two roots are obtained by rotating the principal root by 2π/3 and
π/3.

Algorithm

The function CCBRT(Z) evaluates z1/3. The value |z| must not overflow.

Example

In this example, the cube root of –3 + 0.0076i is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CCBRT, VALUE, Z
 EXTERNAL CCBRT, UMACH
C Compute

4 • Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

 Z = (-3.0, 0.0076)
 VALUE = CCBRT(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CCBRT((’, F7.4, ’,’, F7.4, ’)) = (’,
 & F6.3, ’,’ F6.3, ’)’)
 END

Output
CCBRT((-3.0000, 0.0076)) = (0.722, 1.248)

EXPRL/DEXPRL (Single/Double precision)
Evaluate the exponential function factored from first order, (EXP(X) – 1.0)/X.

Usage
EXPRL(X)

Arguments

X — Argument for which the function value is desired. (Input)

EXPRL — Function value. (Output)

Algorithm

The function EXPRL(X) evaluates (e[– 1)/x. It will overflow if e[overflows.

Example

In this example, EXPRL(0.184) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL EXPRL, VALUE, X
 EXTERNAL EXPRL, UMACH
C Compute
 X = 0.184
 VALUE = EXPRL(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ EXPRL(’, F6.3, ’) = ’, F6.3)
 END

Output
EXPRL(0.184) = 1.098

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions • 5

CEXPRL
Evaluate the complex exponential function factored from first order.

Usage
CEXPRL(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CEXPRL — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of CEXPRL(Z) is accurate to less than one-half precision

because the complex argument is too close to a nonzero integer
multiple of 2πi.

Algorithm

The function CEXPRL(Z) evaluates (e] – 1)/z. The argument z must not be so close
to a multiple of 2πi that substantial significance is lost due to cancellation. Also,
the result must not overflow and |ℑz| must not be so large that the trigonometric
functions are inaccurate.

Example

In this example, CEXPRL(0.0076i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CEXPRL, VALUE, Z
 EXTERNAL CEXPRL, UMACH
C Compute
 Z = (0.0, 0.0076)
 VALUE = CEXPRL(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CEXPRL((’, F7.4, ’,’, F7.4, ’)) = (’,
 & F6.3, ’,’ F6.3, ’)’)
 END

Output
CEXPRL((0.0000, 0.0076)) = (1.000, 0.004)

6 • Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

CLOG10/ZLOG10 (Single/Double precision)
Evaluate the principal value of the complex common logarithm.

Usage
CLOG10(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CLOG10 — Complex function value. (Output)

Algorithm

The function CLOG10(Z) evaluates log10(z) . The argument must not be zero, and
|z| must not overflow.

Example

In this example, the log10(0.0076i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CLOG10, VALUE, Z
 EXTERNAL CLOG10, UMACH
C Compute
 Z = (0.0, 0.0076)
 VALUE = CLOG10(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CLOG10((’, F7.4, ’,’, F7.4, ’)) = (’,
 & F6.3, ’,’ F6.3, ’)’)
 END

Output
CLOG10((0.0000, 0.0076)) = (-2.119, 0.682)

ALNREL/DLNREL (Single/Double precision)
Evaluate the natural logarithm of one plus the argument.

Usage
ALNREL(X)

Arguments

X — Argument for the function. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions • 7

ALNREL — Function value. (Output)

Comments

1. Informational error
Type Code
 3 2 Result of ALNREL(X) is accurate to less than one-half

precision because X is too near –1.0.

2. ALNREL evaluates the natural logarithm of (1 + X) accurate in the sense
of relative error even when X is very small. This routine (as opposed to
the intrinsic ALOG) should be used to maintain relative accuracy
whenever X is small and accurately known.

Algorithm

The function ALNREL(X) evaluates ln(1 + x) for x > –1. The argument x must be
greater than –1.0 to avoid evaluating the logarithm of zero or a negative number.
In addition, x must not be so close to –1.0 that considerable significance is lost in
evaluating 1 + x.

Example

In this example, ln(1.189) = ALNREL(0.189) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ALNREL, VALUE, X
 EXTERNAL ALNREL, UMACH
C Compute
 X = 0.189
 VALUE = ALNREL(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ALNREL(’, F6.3, ’) = ’, F6.3)
 END

Output
ALNREL(0.189) = 0.173

CLNREL
Evaluate the principal value of the complex natural logarithm of one plus the
argument.

Usage
CLNREL(Z)

8 • Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions

Arguments

Z — Complex argument for which the complex natural logarithm of 1 + Z is
desired. (Input)

CLNREL — The complex natural logarithm of (1 + Z) accurate in the sense of
relative error even when Z is small. (Output)

Comments

Informational error
Type Code
 3 2 Result of CLNREL(Z) is accurate to less than one-half precision

because Z is too near –1.0.

Algorithm

The function CLNREL(Z) evaluates ln(1 + z). The argument z must not be so close
to –1 that considerable significance is lost in evaluating 1 + z. If it is, a
recoverable error is issued; however, z = –1 is a fatal error because ln(1 + z) is
infinite. Finally, |z| must not overflow.

Let ρ = |z|, z = x + iy and r2 = |1 + z|2 = (1 + x)2 + y2 = 1 + 2x + ρ2. Now, if ρ is
small, we may evaluate CLNREL(Z) accurately by

log(1 + z) = log r + iArg(z + 1)

 = 1/2 log r2 + iArg(z + 1)

 = 1/2 ALNREL(2x + ρ2) + iCARG(1 + z)

Example

In this example, ln(0.0076i) = CLNREL(–1 + 0.0076i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CLNREL, VALUE, Z
 EXTERNAL CLNREL, UMACH
C Compute
 Z = (-1.0, 0.0076)
 VALUE = CLNREL(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CLNREL((’, F6.4, ’,’, F6.4, ’)) = (’,
 & F6.4, ’,’ F6.4, ’)’)
 END

Output
CLNREL((-1.000, .0076)) = (-4.880, 1.571)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 9

Chapter 2: Trigonometric and
Hyperbolic Functions

Routines
2.1 Trigonometric Functions

Evaluate tan z for complex z.. CTAN 10
Evaluate cot x for real x ... COT 11
Evaluate cot z for complex z ..CCOT 12
Evaluate sin x for x a real angle in degrees SINDG 13
Evaluate cos x for x a real angle in degrees.......................COSDG 14

Evaluate sin-1 z for complex z...CASIN 15

Evaluate cos-1 z for complex z.. CACOS 16

Evaluate tan-1 z for complex z ...CATAN 17

Evaluate tan-1(x/y) for x and y complexCATAN2 18

2.2 Hyperbolic Functions
Evaluate sinh z for complex z ...CSINH 19
Evaluate cosh z for complex z ..CCOSH 20
Evaluate tanh z for complex z... CTANH 20

2.3 Inverse Hyperbolic Functions
Evaluate sinh-1 x for real x ..ASINH 21

Evaluate sinh-1 z for complex z.. CASINH 22

Evaluate cosh-1 x for real x ... ACOSH 23

Evaluate cosh-1 z for complex z....................................... CACOSH 24

Evaluate tanh-1 x for real x...ATANH 24

Evaluate tanh-1 z for complex z .. CATANH 25

10 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Usage Notes
The complex inverse trigonometric hyperbolic functions are single-valued and
regular in a slit complex plane. The branch cuts are shown below for z = x + iy,
i.e., x = ℜz and y = ℑz are the real and imaginary parts of z, respectively.

– 1 + 1
x

y

x

y

+ i

– i

 sin-1z, cos-1z and tanh-1(z) tan-1z and sinh-1z

+ 1
x

y

 cosh-1z

Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

CTAN/ZTAN (Single/Double precision)
Evaluate the complex tangent.

Usage
CTAN(Z)

Arguments

Z — Complex number representing the angle in radians for which the tangent is
desired. (Input)

CTAN — Complex function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of CTAN(Z) is accurate to less than one-half precision

because the real part of Z is too near π/2 or 3π/2 when the
imaginary part of Z is near zero or because the absolute value of
the real part is very large and the absolute value of the
imaginary part is small.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 11

Algorithm

Let z = x + iy. If |cos z|2 is very small, that is, if x is very close to π/2 or 3π/2 and
if y is small, then tan z is nearly singular and a fatal error condition is reported. If

|cos z|2 is somewhat larger but still small, then the result will be less accurate than
half precision. When 2x is so large that sin 2x cannot be evaluated to any nonzero
precision, the following situation results. If |y| < 3/2, then CTAN cannot be
evaluated accurately to better than one significant figure. If 3/2 ≤ |y| < −1/2 ln ε/2,
then CTAN can be evaluated by ignoring the real part of the argument; however,
the answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision.

Example

In this example, tan(1 + i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CTAN, VALUE, Z
 EXTERNAL CTAN, UMACH
C Compute
 Z = (1.0, 1.0)
 VALUE = CTAN(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CTAN((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CTAN((1.000, 1.000)) = (0.272, 1.084)

COT/DCOT (Single/Double precision)
Evaluate the cotangent.

Usage
COT(X)

Arguments

X — Angle in radians for which the cotangent is desired. (Input)

COT — Function value. (Output)

Comments

1. Informational error
Type Code

12 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

 3 2 Result of COT(X) is accurate to less than one-half
precision because ABS(X) is too large, or X is nearly a
multiple of π.

2. Referencing COT(X) is NOT the same as computing 1.0/TAN(X) because
the error conditions are quite different. For example, when X is near π/2,
TAN(X) cannot be evaluated accurately and an error message must be
issued. However, COT(X) can be evaluated accurately in the sense of
absolute error.

Algorithm

The magnitude of x must not be so large that most of the computer word contains
the integer part of x. Likewise, x must not be too near an integer multiple of π,
although x close to the origin causes no accuracy loss. Finally, x must not be so
close to the origin that COT(X) ≈ 1/x overflows.

Example

In this example, cot(0.3) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL COT, VALUE, X
 EXTERNAL COT, UMACH
C Compute
 X = 0.3
 VALUE = COT(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ COT(’, F6.3, ’) = ’, F6.3)
 END

Output
COT(0.300) = 3.233

CCOT/ZCOT (Single/Double precision)
Evaluate the complex cotangent.

Usage
CCOT(Z)

Arguments

Z — Complex number representing the angle in radians for which the cotangent
is desired. (Input)

CCOT — Complex function value. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 13

Comments

Informational error
Type Code
 3 2 Result of CCOT(Z) is accurate to less than one-half precision

because the real part of Z is too near a multiple of π when the
imaginary part of Z is near zero, or because the absolute value
of the real part is very large and the absolute value of the
imaginary part is small

Algorithm

Let z = x + iy. If |sin z|2 is very small, that is, if x is very close to a multiple of π
and if |y| is small, then cot z is nearly singular and a fatal error condition is

reported. If |sin z|2 is somewhat larger but still small, then the result will be less
accurate than half precision. When |2x| is so large that sin 2x cannot be evaluated
accurately to even zero precision, the following situation results. If |y| < 3/2, then
CCOT cannot be evaluated accurately to be better than one significant figure. If
3/2 ≤ |y| < −1/2 ln ε/2, where ε = AMACH(4) is the machine precision, then CCOT
can be evaluated by ignoring the real part of the argument; however, the answer
will be less accurate than half precision. Finally, |z| must not be so small that cot z
≈ 1/z overflows.

Example

In this example, cot(1 + i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CCOT, VALUE, Z
 EXTERNAL CCOT, UMACH
C Compute
 Z = (1.0, 1.0)
 VALUE = CCOT(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CCOT((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CCOT((1.000, 1.000)) = (0.218,-0.868)

SINDG/DSINDG (Single/Double precision)
Evaluate the sine for the argument in degrees.

Usage
SINDG(X)

14 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument in degrees for which the sine is desired. (Input)

SINDG — Function value. (Output)

Algorithm

To avoid unduly inaccurate results, the magnitude of x must not be so large that
the integer part fills more than the computer word. Under no circumstances is the
magnitude of x allowed to be larger than the largest representable integer because
complete loss of accuracy occurs in this case.

Example

In this example, sin 45° is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL SINDG, VALUE, X
 EXTERNAL SINDG, UMACH
C Compute
 X = 45.0
 VALUE = SINDG(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ SIN(’, F6.3, ’ deg) = ’, F6.3)
 END

Output
SIN(45.000 deg) = 0.707

COSDG/DCOSDG (Single/Double precision)
Evaluate the cosine for the argument in degrees.

Usage
COSDG(X)

Arguments

X — Argument in degrees for which the cosine is desired. (Input)

COSDG — Function value. (Output)

Algorithm

To avoid unduly inaccurate results, the magnitude of x must not be so large that
the integer part fills more than the computer word. Under no circumstances is the
magnitude of x allowed to be larger than the largest representable integer because
complete loss of accuracy occurs in this case.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 15

Example

In this example, cos 100° computed and printed.

C Declare variables
 INTEGER NOUT
 REAL COSDG, VALUE, X
 EXTERNAL COSDG, UMACH
C Compute
 X = 100.0
 VALUE = COSDG(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ COS(’, F6.2, ’ deg) = ’, F6.3)
 END

Output
COS(100.00 deg) = -0.174

CASIN/ZASIN (Single/Double precision)
Evaluate the complex arc sine.

Usage
CASIN(ZINP)

Arguments

ZINP — Complex argument for which the arc sine is desired. (Input)

CASIN — Complex function value in units of radians and the real part in the first
or fourth quadrant. (Output)

Algorithm

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here,
b = AMACH(2) is the largest floating point number. This error is not detected by
CASIN.

See Pennisi (1963, page 126) for reference.

16 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Example

In this example, sin-1(1 − i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CASIN, VALUE, Z
 EXTERNAL CASIN, UMACH
C Compute
 Z = (1.0, -1.0)
 VALUE = CASIN(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CASIN((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CASIN((1.000,-1.000)) = (0.666,-1.061)

CACOS/ZACOS (Single/Double precision)
Evaluate the complex arc cosine.

Usage
CACOS(Z)

Arguments

Z — Complex argument for which the arc cosine is desired. (Input)

CACOS — Complex function value in units of radians with the real part in the
first or second quadrant. (Output)

Algorithm

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur. Here,
b = AMACH(2) is the largest floating point number. This error is not detected by
CACOS.

Example

In this example, cos-1(1 − i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CACOS, VALUE, Z
 EXTERNAL CACOS, UMACH
C Compute
 Z = (1.0, -1.0)
 VALUE = CACOS(Z)
C Print the results

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 17

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CACOS((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CACOS((1.000,-1.000)) = (0.905, 1.061)

CATAN/ZATAN (Single/Double precision)
Evaluate the complex arc tangent.

Usage
CATAN(Z)

Arguments

Z — Complex argument for which the arc tangent is desired. (Input)

CATAN — Complex function value in units of radians with the real part in the
first or fourth quadrant. (Output)

Comments

Informational error
Type Code
 3 2 Result of CATAN(Z) is accurate to less than one-half precision

because |Z2| is too close to −1.0.

Algorithm

The argument z must not be exactly ± i, because tan-1 z is undefined there. In
addition, z must not be so close to ± i that substantial significance is lost.

Example

In this example, tan-1(0.01 − 0.01i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CATAN, VALUE, Z
 EXTERNAL CATAN, UMACH
C Compute
 Z = (0.01, 0.01)
 VALUE = CATAN(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CATAN((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)

18 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

 END

Output
CATAN((0.010, 0.010)) = (0.010, 0.010)

CATAN2/ZATAN2 (Single/Double precision)
Evaluate the complex arc tangent of a ratio.

Usage
CATAN2(CSN, CCS)

Arguments

CSN — Complex numerator of the ratio for which the arc tangent is desired.
(Input)

CCS — Complex denominator of the ratio. (Input)

CATAN2 — Complex function value in units of radians with the real part
between −π and π. (Output)

Comments

The result is returned in the correct quadrant (modulo 2π).

Algorithm

Let z1 = CSN and z2 = CCS. The ratio z = z1/z2 must not be ± i because tan-1(± i) is
undefined. Likewise, z1 and z2 should not both be zero. Finally, z must not be so
close to ±i that substantial accuracy loss occurs.

Example

In this example,

tan
/ /− +

+
1 1 2 2

2

0 5 0 5i

i
is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CATAN2, VALUE, X, Y
 EXTERNAL CATAN2, UMACH
C Compute
 X = (2.0, 1.0)
 Y = (0.5, 0.5)
 VALUE = CATAN2(Y, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Y, X, VALUE

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 19

99999 FORMAT (’ CATAN2((’, F6.3, ’,’, F6.3, ’), (’, F6.3, ’,’, F6.3,
 & ’)) = (’, F6.3, ’,’, F6.3, ’)’)
 END

Output
CATAN2((0.500, 0.500), (2.000, 1.000)) = (0.294, 0.092)

CSINH/ZSINH (Single/Double precision)
Evaluate the complex hyperbolic sine.

Usage
CSINH(Z)

Arguments

Z — Complex number representing the angle in radians for which the complex
hyperbolic sine is desired. (Input)

CSINH — Complex function value. (Output)

Algorithm

The argument z must satisfy

ℑ ≤z 1 / ε

where ε = AMACH(4) is the machine precision and ℑz is the imaginary part of z.

Example

In this example, sinh(5 − i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CSINH, VALUE, Z
 EXTERNAL CSINH, UMACH
C Compute
 Z = (5.0, -1.0)
 VALUE = CSINH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CSINH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F7.3, ’,’, F7.3, ’)’)
 END

Output
CSINH((5.000,-1.000)) = (40.092,-62.446)

20 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

CCOSH/ZCOSH (Single/Double precision)
Evaluate the complex hyperbolic cosine.

Usage
CCOSH(Z)

Arguments

Z — Complex number representing the angle in radians for which the hyperbolic
cosine is desired. (Input)

CCOSH — Complex function value. (Output)

Algorithm

Let ε = AMACH(4) be the machine precision. If |ℑz| is larger than

1 / ε
then the result will be less than half precision, and a recoverable error condition is
reported. If |ℑz| is larger than 1/ε, the result has no precision and a fatal error is
reported. Finally, if |ℜz| is too large, the result overflows and a fatal error results.
Here, ℜz and ℑz represent the real and imaginary parts of z, respectively.

Example

In this example, cosh(−2 + 2i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CCOSH, VALUE, Z
 EXTERNAL CCOSH, UMACH
C Compute
 Z = (-2.0, 2.0)
 VALUE = CCOSH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CCOSH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CCOSH((-2.000, 2.000)) = (-1.566,-3.298)

CTANH/ZTANH (Single/Double precision)
Evaluate the complex hyperbolic tangent.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 21

Usage
CTANH(Z)

Arguments

Z — Complex number representing the angle in radians for which the hyperbolic
tangent is desired. (Input)

CTANH — Complex function value. (Output)

Algorithm

Let z = x + iy. If |cosh z|2 is very small, that is, if y mod 2π is very close to π/2 or
3π/2 and if x is small, then tanh z is nearly singular; a fatal error condition is

reported. If |cosh z|2 is somewhat larger but still small, then the result will be less
accurate than half precision. When 2y (z = x + iy) is so large that sin 2y cannot be
evaluated accurately to even zero precision, the following situation results. If |x| <
3/2, then CTANH cannot be evaluated accurately to better than one significant
figure. If 3/2 ≤ |y| < –1/2 ln (ε/2), then CTANH can be evaluated by ignoring the
imaginary part of the argument; however, the answer will be less accurate than
half precision. Here, ε = AMACH(4) is the machine precision.

Example

In this example, tanh(1 + i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CTANH, VALUE, Z
 EXTERNAL CTANH, UMACH
C Compute
 Z = (1.0, 1.0)
 VALUE = CTANH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CTANH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CTANH((1.000, 1.000)) = (1.084, 0.272)

ASINH/DASINH (Single/Double precision)
Evaluate the arc hyperbolic sine.

Usage
ASINH(X)

22 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument for which the arc hyperbolic sine is desired. (Input)

ASINH — Function value. (Output)

Algorithm

The function ASINH(X) computes the inverse hyperbolic sine of x, sinh-1x.

Example

In this example, sinh-1(2.0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ASINH, VALUE, X
 EXTERNAL ASINH, UMACH
C Compute
 X = 2.0
 VALUE = ASINH(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ASINH(’, F6.3, ’) = ’, F6.3)
 END

Output
ASINH(2.000) = 1.444

CASINH/ZASINH (Single/Double precision)
Evaluate the complex arc hyperbolic sine.

Usage
CASINH(Z)

Arguments

Z — Complex argument for which the arc hyperbolic sine is desired. (Input)

CASINH — Complex function value. (Output)

Algorithm

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur, where
b = AMACH(2) is the largest floating point number. This error is not detected by
CASINH.

Example

In this example, sinh-1(−1 + i) is computed and printed.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 23

C Declare variables
 INTEGER NOUT
 COMPLEX CASINH, VALUE, Z
 EXTERNAL CASINH, UMACH
C Compute
 Z = (-1.0, 1.0)
 VALUE = CASINH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CASINH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CASINH((-1.000, 1.000)) = (-1.061, 0.666)

ACOSH/DACOSH (Single/Double precision)
Evaluate the arc hyperbolic cosine.

Usage
ACOSH(X)

Arguments

X — Argument for which the arc hyperbolic cosine is desired. (Input)

ACOSH — Function value. (Output)

Comments

The result of ACOSH(X) is returned on the positive branch. Recall that, like
SQRT(X), ACOSH(X) has multiple values.

Algorithm

The function ACOSH(X) computes the inverse hyperbolic cosine of x, cosh-1x.

Example

In this example, cosh-1(1.4) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ACOSH, VALUE, X
 EXTERNAL ACOSH, UMACH
C Compute
 X = 1.4
 VALUE = ACOSH(X)
C Print the results
 CALL UMACH (2, NOUT)

24 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ACOSH(’, F6.3, ’) = ’, F6.3)
 END

Output
ACOSH(1.400) = 0.867

CACOSH/ZACOSH (Single/Double precision)
Evaluate the complex arc hyperbolic cosine.

Usage
CACOSH(Z)

Arguments

Z — Complex argument for which the arc hyperbolic cosine is desired. (Input)

CACOSH — Complex function value. (Output)

Algorithm

Almost all arguments are legal. Only when |z| > b/2 can an overflow occur, where
b = AMACH(2) is the largest floating point number. This error is not detected by
CACOSH.

Example

In this example, cosh-1(1 − i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CACOSH, VALUE, Z
 EXTERNAL CACOSH, UMACH
C Compute
 Z = (1.0, -1.0)
 VALUE = CACOSH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CACOSH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CACOSH((1.000,-1.000)) = (-1.061, 0.905)

ATANH/DATANH (Single/Double precision)
Evaluate the arc hyperbolic tangent.

IMSL MATH/LIBRARY Special Functions Chapter 2: Trigonometric and Hyperbolic Functions • 25

Usage
ATANH(X)

Arguments

X — Argument for which the arc hyperbolic tangent is desired. (Input)

ATANH — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of ATANH(X) is accurate to less than one-half precision

because the absolute value of the argument is too close to 1.0.

Algorithm

ATANH(X) computes the inverse hyperbolic tangent of x, tanh-1x. The argument x
must satisfy

x < −1 ε

where ε = AMACH(4) is the machine precision. Note that |x| must not be so close to
one that the result is less accurate than half precision.

Example

In this example, tanh-1(−1/4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ATANH, VALUE, X
 EXTERNAL ATANH, UMACH
C Compute
 X = -0.25
 VALUE = ATANH(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ATANH(’, F6.3, ’) = ’, F6.3)
 END

Output
ATANH(-0.250) = -0.255

CATANH/ZATANH (Single/Double precision)
Evaluate the complex arc hyperbolic tangent.

26 • Chapter 2: Trigonometric and Hyperbolic Functions IMSL MATH/LIBRARY Special Functions

Usage
CATANH(Z)

Arguments

Z — Complex argument for which the arc hyperbolic tangent is desired. (Input)

CATANH — Complex function value. (Output)

Algorithm

The argument must not be exactly ±1 because tanh-1 z is undefined there. In
addition, z must not be so close to ±1 that substantial significance is lost.

Example

In this example, tanh-1(1/2 + i/2) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CATANH, VALUE, Z
 EXTERNAL CATANH, UMACH
C Compute
 Z = (0.5, 0.5)
 VALUE = CATANH(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CATANH((’, F6.3, ’,’, F6.3, ’)) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CATANH((0.500, 0.500)) = (0.402, 0.554)

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 27

Chapter 3: Exponential Integrals
and Related Functions

Routines
Evaluate the exponential integral, Ei(x)...EI 28
Evaluate the exponential integral, E1(x)E1 29
Evaluate the scaled exponential integrals, integer order,
EQ(x) ..ENE 30
Evaluate the logarithmic integral, li(x) ...ALI 31
Evaluate the sine integral, Si(x) ..SI 33
Evaluate the cosine integral, Ci(x) ... CI 34
Evaluate the cosine integral (alternate definition)CIN 35
Evaluate the hyperbolic sine integral, Shi(x)SHI 36
Evaluate the hyperbolic cosine integral, Chi(x)CHI 37
Evaluate the hyperbolic cosine integral (alternate definition).. CINH 38

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a plot of the exponential integral functions that can be computed
by the routines described in this chapter.

28 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Figure 3-1 Plot of e[E(x), E1(x) and Ei(x)

EI/DEI (Single/Double precision)
Evaluate the exponential integral for arguments greater than zero and the Cauchy
principal value for arguments less than zero.

Usage
EI(X)

Arguments

X — Argument for which the function value is desired. (Input)

EI — Function value. (Output)

Comments

If principal values are used everywhere, then for all X, EI(X) = −E1(−X) and
E1(X) = −EI(−X)

Algorithm

The exponential integral, Ei(x), is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 29

Ei for () /x e t dt xt
x

= − − ≠−
−

∞I 0

The argument x must be large enough to insure that the asymptotic formula e[/x

does not underflow, and x must not be so large that e[overflows.

Example

In this example, Ei(1.15) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL EI, VALUE, X
 EXTERNAL EI, UMACH
C Compute
 X = 1.15
 VALUE = EI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ EI(’, F6.3, ’) = ’, F6.3)
 END

Output
EI(1.150) = 2.304

E1/DE1 (Single/Double precision)
Evaluate the exponential integral for arguments greater than zero and the Cauchy
principal value of the integral for arguments less than zero.

Usage
E1(X)

Arguments

X — Argument for which the integral is to be evaluated. (Input)

E1 — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too large.

Algorithm

The alternate definition of the exponential integral, E1(x), is

30 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

E x e t dt xt

x1 for () /= ≠−∞I 0

The path of integration must exclude the origin and not cross the negative real
axis.

The argument x must be large enough that e-[does not overflow, and x must be

small enough to insure that e-[/x does not underflow.

Example

In this example, E1(1.3) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL E1, VALUE, X
 EXTERNAL E1, UMACH
C Compute
 X = 1.3
 VALUE = E1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ E1(’, F6.3, ’) = ’, F6.3)
 END

Output
E1(1.300) = 0.135

ENE/DENE (Single/Double precision)
Evaluate the exponential integral of integer order for arguments greater than zero
scaled by EXP(X).

Usage
CALL ENE (X, N, F)

Arguments

X — Argument for which the integral is to be evaluated. (Input)
It must be greater than zero.

N — Integer specifying the maximum order for which the exponential integral is
to be calculated. (Input)

F — Vector of length N containing the computed exponential integrals scaled by
EXP(X). (Output)

Algorithm

The scaled exponential integral of order n, EQ(x), is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 31

E x e e t dt xn
x xt n() = >−∞ −I1 0 for

The argument x must satisfy x > 0. The integer n must also be greater than zero.
This code is based on a code due to Gautschi (1974).

Example

In this example, EQ(10) for n = 1, ..., n is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL F(N), X
 EXTERNAL ENE, UMACH
C Compute
 X = 10.0
 CALL ENE (X, N, F)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K, X, F(K)
 10 CONTINUE
99999 FORMAT (’ E sub ’, I2, ’ (’, F6.3, ’) = ’, F6.3)
 END

Output
E sub 1 (10.000) = 0.092
E sub 2 (10.000) = 0.084
E sub 3 (10.000) = 0.078
E sub 4 (10.000) = 0.073
E sub 5 (10.000) = 0.068
E sub 6 (10.000) = 0.064
E sub 7 (10.000) = 0.060
E sub 8 (10.000) = 0.057
E sub 9 (10.000) = 0.054
E sub 10 (10.000) = 0.051

ALI/DLI (Single/Double precision)
Evaluate the logarithmic integral.

Usage
ALI(X)

Arguments

X — Argument for which the logarithmic integral is desired. (Input)
It must be greater than zero and not equal to one.

ALI — Function value. (Output)

32 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

Comments

Informational error
Type Code
 3 2 Result of ALI(X) is accurate to less than one-half precision

because X is too close to 1.0.

Algorithm

The logarithmic integral, li(x), is defined to be

li for and ()
ln

x
dt

t
x x

x
= − − > ≠I0 0 1

The argument x must be greater than zero and not equal to one. To avoid an
undue loss of accuracy, x must be different from one at least by the square root of
the machine precision.

The function li(x) approximates the function π(x), the number of primes less than
or equal to x. Assuming the Riemann hypothesis (all non-real zeros of ζ(z) are on
the line ℜz = 1/2), then

li() () (ln)x x O x x− =π

Figure 3-2 Plot of li(x) and π(x)

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 33

Example

In this example, li(2.3) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ALI, VALUE, X
 EXTERNAL ALI, UMACH
C Compute
 X = 2.3
 VALUE = ALI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ALI(’, F6.3, ’) = ’, F6.3)
 END

Output
ALI(2.300) = 1.439

SI/DSI (Single/Double precision)
Evaluate the sine integral.

Usage
SI(X)

Arguments

X — Argument for which the function value is desired. (Input)

SI — Function value. (Output)

Algorithm

The sine integral, Si(x), is defined to be

Si() =x t
t

dt
x sin
0I

If

x > 1 / ε

the answer is less accurate than half precision, while for |x| > 1 /ε, the answer has
no precision. Here, ε = AMACH(4) is the machine precision.

Example

In this example, Si(1.25) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL SI, VALUE, X

34 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

 EXTERNAL SI, UMACH
C Compute
 X = 1.25
 VALUE = SI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ SI(’, F6.3, ’) = ’, F6.3)
 END

Output
SI(1.250) = 1.146

CI/DCI (Single/Double precision)
Evaluate the cosine integral.

Usage
CI(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be greater than zero.

CI — Function value. (Output)

Algorithm

The cosine integral, Ci(x), is defined to be

Ci() ln
cos

x x
t

t
dt

x
= + + −Iγ 1

0

where γ ≈ 0.57721566 is Euler’s constant.

The argument x must be larger than zero. If

x > 1 / ε
then the result will be less accurate than half precision. If x > 1/ε, the result will
have no precision. Here, ε = AMACH(4) is the machine precision.

Example

In this example, Ci(1.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL CI, VALUE, X
 EXTERNAL CI, UMACH
C Compute
 X = 1.5

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 35

 VALUE = CI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ CI(’, F6.3, ’) = ’, F6.3)
 END

Output
CI(1.500) = 0.470

CIN/DCIN (Single/Double precision)
Evaluate a function closely related to the cosine integral.

Usage
CIN(X)

Arguments

X — Argument for which the function value is desired. (Input)

CIN — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too small.

Algorithm

The alternate definition of the cosine integral, Cin(x), is

Cin()
cos

x
t

t
dt

x
= −I 1

0

For

0 < <x s

where s = AMACH(1) is the smallest representable positive number, the result
underflows. For

x > 1 / ε

the answer is less accurate than half precision, while for |x| > 1 /ε, the answer has
no precision. Here, ε = AMACH(4) is the machine precision.

Example

In this example, Cin(2π) is computed and printed.

36 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

C Declare variables
 INTEGER NOUT
 REAL CIN, CONST, VALUE, X
 EXTERNAL CIN, CONST, UMACH
C Compute
 X = 2.0*CONST(’pi’)
 VALUE = CIN(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ CIN(’, F6.3, ’) = ’, F6.3)
 END

Output
CIN(6.283) = 2.438

SHI/DSHI (Single/Double precision)
Evaluate the hyperbolic sine integral.

Usage
SHI(X)

Arguments

X — Argument for which the function value is desired. (Input)

SHI— function value. (Output)
SHI equals

sinh() /t t dt
x

0I
Algorithm

The hyperbolic sine integral, Shi(x), is defined to be

Shi()
sinh

x
t

t
dt

x
= I0

The argument x must be large enough that e-[/x does not underflow, and x must

be small enough that e[does not overflow.

Example

In this example, Shi(3.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL SHI, VALUE, X
 EXTERNAL SHI, UMACH
C Compute

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 37

 X = 3.5
 VALUE = SHI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ SHI(’, F6.3, ’) = ’, F6.3)
 END

Output
SHI(3.500) = 6.966

CHI/DCHI (Single/Double precision)
Evaluate the hyperbolic cosine integral.

Usage
CHI(X)

Arguments

X — Argument for which the function value is desired. (Input)

CHI — Function value. (Output)

Comments

When X is negative, the principal value is used.

Algorithm

The hyperbolic cosine integral, Chi(x), is defined to be

Chi for () ln
cosh

x x
t

t
dt x

x
= + + − >Iγ 1

0
0

where γ ≈ 0.57721566 is Euler’s constant.

The argument x must be large enough that e-[/x does not underflow, and x must

be small enough that e[does not overflow.

Example

In this example, Chi(2.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL CHI, VALUE, X
 EXTERNAL CHI, UMACH
C Compute
 X = 2.5
 VALUE = CHI(X)
C Print the results

38 • Chapter 3: Exponential Integrals and Related Functions IMSL MATH/LIBRARY Special Functions

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ CHI(’, F6.3, ’) = ’, F6.3)
 END

Output
CHI(2.500) = 3.524

CINH/DCINH (Single/Double precision)
Evaluate a function closely related to the hyperbolic cosine integral.

Usage
CINH(X)

Arguments

X — Argument for which the function value is desired. (Input)

CINH — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too small.

Algorithm

The alternate definition of the hyperbolic cosine integral, Cinh(x), is

Cinh()
cosh

x
t

t
dt

x
= −I 1

0

For

0 2< <x s

where s = AMACH(1) is the smallest representable positive number, the result

underflows. The argument x must be large enough that e-[/x does not underflow,

and x must be small enough that e[does not overflow.

Example

In this example, Cinh(2.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL CINH, VALUE, X
 EXTERNAL CINH, UMACH
C Compute

IMSL MATH/LIBRARY Special Functions Chapter 3: Exponential Integrals and Related Functions • 39

 X = 2.5
 VALUE = CINH(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ CINH(’, F6.3, ’) = ’, F6.3)
 END

Output
CINH(2.500) = 2.031

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 41

Chapter 4: Gamma Function
and Related Functions

Routines
4.1 Factorial Function

Evaluate the factorial, n! ...FAC 42

Evaluate the binomial coefficient,
n

m

�
��

�
�� BINOM 43

4.2 Gamma Function
Evaluate the real gamma function, Γ(x) GAMMA 44
Evaluate the complex gamma function, Γ(z)....................CGAMMA 46
Evaluate the reciprocal of the real gamma function,
1/Γ(x)... GAMR 48
Evaluate the reciprocal of the complex gamma function,
1/Γ(z).. CGAMR 48
Evaluate the real function, ln |γ(x)|.....................................ALNGAM 49
Evaluate the complex function, ln γ(z).............................. CLNGAM 51
Evaluate the log abs gamma function and its sign............ALGAMS 52

4.3. Incomplete Gamma Function
Evaluate the incomplete gamma function, γ(a,x)GAMI 53
Evaluate the complementary incomplete gamma function,
Γ(a,x).. GAMIC 54
Evaluate Tricomi’s incomplete gamma function, γ*(a, x) GAMIT 55

4.4. Psi Function
Evaluate the real psi function, ψ(x) .. PSI 57
Evaluate the complex psi function, ψ(z)...................................CPSI 58

4.5. Pochhammer’s Function
Evaluate Pochhammer’s generalized symbol, (a)x................ POCH 59
Evaluate Pochhammer’s symbol starting
from the first order... POCH1 60

42 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

4.6. Beta Function
Evaluate the real beta function, β(a,b)....................................BETA 62
Evaluate the complex beta function, β(a,b) CBETA 63
Evaluate the log of the real beta function, ln β(a,b)ALBETA 64
Evaluate the log of the complex beta function, ln β(a,b).... CLBETA 65
Evaluate the incomplete beta function, Ix(a,b)BETAI 66

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964).

The following is a table of the functions defined in this chapter:

FAC n! = Γ(n + 1)
BINOM n!/m!(n − m)!, 0 ≤ m ≤ n

GAMMA Γ x e t dt xt x0 5 = I ≠ − −−∞ −
0

1 0 1 2, , , ,K

CGAMMA Γ z e t dt xt z0 5 = I ≠ − −−∞ −
0

1 0 1 2, , , ,K
GAMR 1/Γ(x)
CGAMR 1/Γ(z)
ALNGAM ln |Γ(x)|, x ≠ 0, −1, −2, …
CLNGAM ln Γ(z), x ≠ 0, −1, −2, …
ALGAMS ln |Γ(x)| and sign Γ(x), x ≠ 0, −1, −2, …

GAMI γ a x t e dt a xax t, , ,0 5 = I > ≥− −1
0 0 0

GAMIC Γ a x t e dt xa
x

t, ,0 5 = I >−∞ −1 0

GAMIT γ*(a, x) = (x-D/Γ(a))γ(a, x), x ≥ 0
PSI ψ(x) = Γ′(x)/Γ(x), x ≠ 0, −1, −2, …
CPSI ψ(z) = Γ′(z)/Γ(z), z≠ 0, −1, −2, …
POCH (a)[= Γ(a + x)/Γ(a), if a + x = 0, −1, −2, …

then a must = 0, −1, −2, …
POCH1 ((a)[− 1)/x, if a + x = 0, −1, −2, … then a must = 0, −1, −2, …
BETA β(x1, x2) = Γ(x1)Γ(x2)/Γ(x1 + x2), x1 > 0 and x2 > 0
CBETA β(z1, z2) = Γ(z1)Γ(z2)/Γ(z1 + z2), z1 > 0 and z2 > 0
ALBETA ln β(a, b), a > 0, b > 0
CLBETA ln β(a, b), ℜa > 0, ℜb > 0
BETAI I[(a, b) = β[(a, b)/β(a, b), 0 ≤ x ≤ 1, a > 0, b > 0

FAC/DFAC (Single/Double precision)
Evaluate the factorial of the argument.

Usage
FAC(N)

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 43

Arguments

N — Argument for which the factorial is desired. (Input)

FAC — Function value. (Output)

Comments

To evaluate the factorial for nonintegral values of the argument, the gamma
function should be used. For large values of the argument, the log gamma
function should be used.

Algorithm

The factorial is computed using the relation n! = Γ(n + 1). The function Γ(x) is
defined in GAMMA on page 45. The argument n must be greater than or equal to
zero, and it must not be so large that n! overflows. Approximately, n! overflows

when nQe-Q overflows.

Example

In this example, 6! is computed and printed.
C Declare variables
 INTEGER N, NOUT
 REAL FAC, VALUE
 EXTERNAL FAC, UMACH
C Compute
 N = 6
 VALUE = FAC(N)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) N, VALUE
99999 FORMAT (’ FAC(’, I1, ’) = ’, F6.2)
 END

Output
FAC(6) = 720.00

BINOM/DBINOM (Single/Double precision)
Evaluate the binomial coefficient.

Usage
BINOM(N, M)

Arguments

N — First parameter of the binomial coefficient. (Input)
N must be nonnegative.

44 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

M — Second parameter of the binomial coefficient. (Input)
M must be nonnegative and less than or equal to N.

BINOM — Function value. (Output)

Comments

To evaluate binomial coefficients for nonintegral values of the arguments, the
complete beta function or log beta function should be used.

Algorithm

The binomial function is defined to be

n

m
n

m n m

�
��

�
�� =

−
!

!()!

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example,
9

5
�
��

�
�� is computed and printed.

C Declare variables
 INTEGER M, N, NOUT
 REAL BINOM, VALUE
 EXTERNAL BINOM, UMACH
C Compute
 N = 9
 M = 5
 VALUE = BINOM(N, M)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) N, M, VALUE
99999 FORMAT (’ BINOM(’, I1, ’,’, I1, ’) = ’, F6.2)
 END

Output
BINOM(9,5) = 126.00

GAMMA/DGAMMA (Single/Double precision)
Evaluate the complete gamma function.

Usage
GAMMA(X)

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 45

Arguments

X — Argument for which the complete gamma function is desired. (Input)

GAMMA — Function value. (Output)

Comments

Informational errors
Type Code
 2 1 The function underflows because X is too small.
 3 2 Result is accurate to less than one-half precision because X is

too near a negative integer.

Algorithm

The gamma function, Γ(x), is defined to be

Γ x t e dt xx t0 5 = >−∞ −I 1

0
0 for

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. Also,
the argument x must be greater than x$ so that Γ(x) does not underflow, and x
must be less than x" so that Γ(x) does not overflow. The underflow limit occurs
first for arguments that are close to large negative half integers. Even though
other arguments away from these half integers may yield machine-representable
values of Γ(x), such arguments are considered illegal. Users who need such values
should use the log gamma function ALNGAM, page 49, or ALGAMS, page 52.
Finally, the argument should not be so close to a negative integer that the result is
less accurate than half precision. The limits x$ and x" are available by

CALL R9GAML (XMIN, XMAX)
CALL D9GAML (XMIN, XMAX)

46 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Figure 4-1 Plot of Γ(x) and 1/Γ(x)

Example

In this example, Γ(5.0) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL GAMMA, VALUE, X
 EXTERNAL GAMMA, UMACH
C Compute
 X = 5.0
 VALUE = GAMMA(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ GAMMA(’, F6.3, ’) = ’, F6.3)
 END

Output
GAMMA(5.000) = 24.000

CGAMMA
Evaluate the complex gamma function.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 47

Usage
CGAMMA(Z)

Arguments

Z — Complex argument for which the gamma function is desired. (Input)

CGAMMA — Complex function value. (Output)

Comments

This routine simply exponentiates the complex log gamma function.

Algorithm

The gamma function, Γ(z), is defined to be

Γ z t e dt zz t0 5 = ℜ >−∞ −I 1

0
0 for

For ℜ(z) < 0, the above definition is extended by analytic continuation.

z must not be so close to a negative integer that the result is less accurate than half
precision. If ℜ(z) is too small, then the result will underflow. When ℑ(z) ≈ 0, ℜ
(z) should be greater than x$ so that the result does not underflow, and ℜ(z)
should be less than x" so that the result does not overflow. x$ and x" are
available by
CALL R9GAML (XMIN, XMAX)
CALL D9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will
underflow.

Example

In this example, Γ(1.4 + 3i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CGAMMA, VALUE, Z
 EXTERNAL CGAMMA, UMACH
C Compute
 Z = (1.4, 3.0)
 VALUE = CGAMMA(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CGAMMA(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CGAMMA(1.400, 3.000) = (-0.001, 0.061)

48 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

GAMR/DGAMR (Single/Double precision)
Evaluate the reciprocal gamma function.

Usage
GAMR(X)

Arguments

X — Argument for which the reciprocal gamma function is desired. (Input)

GAMR — Function value. (Output)

Algorithm

The reciprocal gamma function is defined to be 1/Γ(x). See GAMMA (page 45) for
the definition of Γ(x).

The gamma function is not defined for integers less than or equal to zero. Also, x
must be larger than x$ so that 1/Γ(x) does not underflow, and x must be smaller
than x" so that 1/Γ(x) does not overflow. Symmetric overflow and underflow
limits x$ and x" are obtainable from

CALL R9GAML (XMIN, XMAX)
CALL D9GAML (XMIN, XMAX)

Example

In this example, 1/Γ(1.85) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL GAMR, VALUE, X
 EXTERNAL GAMR, UMACH
C Compute
 X = 1.85
 VALUE = GAMR(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ GAMR(’, F6.3, ’) = ’, F6.3)
 END

Output
GAMR(1.850) = 1.058

CGAMR
Evaluate the reciprocal complex gamma function.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 49

Usage
CGAMR(Z)

Arguments

Z — Complex argument for which the reciprocal gamma function is desired.
(Input)

CGAMR — Complex function value. (Output)

Comments

This function is well behaved near zero and negative integers.

Algorithm

The function CGAMR computes 1/Γ(z). See CGAMMA (page 47) for the definition of
Γ(z).

For ℑ(z) ≈ 0, z must be larger than x$ so that 1/Γ(z) does not underflow, and x
must be smaller than x" so that 1/Γ(z) does not overflow. Symmetric overflow
and underflow limits x$ and x" are obtainable from

CALL R9GAML (XMIN, XMAX)
CALL D9GAML (XMIN, XMAX)

Note that z must not be too far from the real axis because the result will overflow
there.

Example

In this example, ln Γ(1.4 + 3i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CGAMR, VALUE, Z
 EXTERNAL CGAMR, UMACH
C Compute
 Z = (1.4, 3.0)
 VALUE = CGAMR(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CGAMR(’, F6.3, ’,’, F6.3, ’) = (’, F7.3, ’,’, F7.3, ’)’)
 END

Output
CGAMR(1.400, 3.000) = (-0.303,-16.367)

ALNGAM/DLNGAM (Single/Double precision)
Evaluate the logarithm of the absolute value of the gamma function.

50 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage
ALNGAM(X)

Arguments

X — Argument for which the function value is desired. (Input)

ALNGAM — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of ALNGAM(X) is accurate to less than one-half precision

because X is too near a negative integer.

Algorithm

The function ALNGAM computes ln |Γ(x)|. See GAMMA (page 45) for the definition
of Γ(x).

The gamma function is not defined for integers less than or equal to zero. Also, |x|
must not be so large that the result overflows. Neither should x be so close to a
negative integer that the accuracy is worse than half precision.

Figure 4-2 Plot of log|Γ(x)|

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 51

Example

In this example, ln |Γ(1.85)| is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ALNGAM, VALUE, X
 EXTERNAL ALNGAM, UMACH
C Compute
 X = 1.85
 VALUE = ALNGAM(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ALNGAM(’, F6.3, ’) = ’, F6.3)
 END

Output
ALNGAM(1.850) = -0.056

CLNGAM
Evaluate the complex natural logarithm of the gamma function.

Usage
CLNGAM(ZIN)

Arguments

ZIN — Complex argument for which the logarithm of the gamma function is
desired. (Input)

CLNGAM — Complex function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of CLNGAM(ZIN) is accurate to less than one-half

precision because ZIN is too near a negative integer.

Algorithm

The function CLNGAM computes ln Γ(z). See CGAMMA (page 47) for the definition
of Γ(z).

The argument z must not be so large that the result overflows. Neither should z be
so close to a negative integer that the accuracy is worse than half precision.

Example

In this example, ln Γ(1.4 + 3i) is computed and printed.

52 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

C Declare variables
 INTEGER NOUT
 COMPLEX CLNGAM, VALUE, Z
 EXTERNAL CLNGAM, UMACH
C Compute
 Z = (1.4, 3.0)
 VALUE = CLNGAM(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CLNGAM(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CLNGAM(1.400, 3.000) = (-2.795, 1.589)

ALGAMS/DLGAMS (Single/Double precision)
Return the logarithm of the absolute value of the gamma function and the sign of
gamma.

Usage
CALL ALGAMS (X, ALGM, S)

Arguments

X — Argument for which the logarithm of the absolute value of the gamma
function is desired. (Input)

ALGM — Result of the calculation. (Output)

S — Sign of gamma(X). (Output)
If gamma(X) is greater than or equal to zero, S = 1.0. If gamma(X) is less than
zero, S = −1.0.

Comments

Informational error
Type Code
 3 2 Result of ALGAMS is accurate to less than one-half precision

because X is too near a negative integer.

Algorithm

The function ALGAMS computes ln |Γ(x)| and the sign of Γ(x). See GAMMA
(page 44) for the definition of Γ(x).

The result overflows if |x| is too large. The accuracy is worse than half precision if
x is too close to a negative integer.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 53

Example

In this example, ln |Γ(1.85)| and the sign of Γ(1.85) are computed and printed.

C Declare variables
 INTEGER NOUT
 REAL VALUE, S, X
 EXTERNAL ALGAMS, UMACH
C Compute
 X = 1.85
 CALL ALGAMS(X, VALUE, S)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) X, VALUE
99998 FORMAT (’ Log Abs(Gamma(’, F6.3, ’)) = ’, F6.3)
 WRITE (NOUT,99999) X, S
99999 FORMAT (’ Sign(Gamma(’, F6.3, ’)) = ’, F6.2)
 END

Output
Log Abs(Gamma(1.850)) = -0.056
Sign(Gamma(1.850)) = 1.00

GAMI/DGAMI (Single/Double precision)
Evaluate the incomplete gamma function.

Usage
GAMI(A, X)

Arguments

A — The integrand exponent parameter. (Input)
It must be positive.

X — The upper limit of the integral definition of GAMI. (Input)
It must be nonnegative.

GAMI — Function value. (Output)

Algorithm

The incomplete gamma function is defined to be

γ a x t e dt a xax t,0 5 = > ≥− −I 1

0
0 0 for and

The function γ(a, x) is defined only for a greater than zero. Although γ(a, x) is
well defined for x > −∞, this algorithm does not calculate γ(a, x) for negative x.
For large a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is bounded by
Γ(a), and users may find this bound a useful guide in determining legal values of
a.

54 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Because logarithmic variables are used, a slight deterioration of two or three
digits of accuracy will occur when GAMI is very large or very small.

Error! Objects cannot be created from editing field codes.

Figure 4-3 Contour Plot of γ(a, x)

Example

In this example, γ(2.5, 0.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, GAMI, VALUE, X
 EXTERNAL GAMI, UMACH
C Compute
 A = 2.5
 X = 0.9
 VALUE = GAMI(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ GAMI(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
GAMI(2.500, 0.900) = 0.1647

GAMIC/DGAMIC (Single/Double precision)
Evaluate the complementary incomplete gamma function.

Usage
GAMIC(A, X)

Arguments

A — The integrand exponent parameter as per the remarks. (Input)

X — The upper limit of the integral definition of GAMIC. (Input)
If A is positive, then X must be positive. Otherwise, X must be nonnegative.

GAMIC — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of GAMIC(A, X) is accurate to less than one-half precision

because A is too near a negative integer.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 55

Algorithm

The incomplete gamma function is defined to be

Γ a x t e dta

x

t,0 5 = −∞ −I 1

The only general restrictions on a are that it must be positive if x is zero;
otherwise, it must not be too close to a negative integer such that the accuracy of
the result is less than half precision. Furthermore, Γ(a, x) must not be so small
that it underflows, or so large that it overflows. Although Γ(a, x) is well defined
for x > −∞ and a > 0, this algorithm does not calculate Γ(a, x) for negative x.

The function GAMIC is based on a code by Gautschi (1979).

Example

In this example, Γ(2.5, 0.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, GAMIC, VALUE, X
 EXTERNAL GAMIC, UMACH
C Compute
 A = 2.5
 X = 0.9
 VALUE = GAMIC(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ GAMIC(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
GAMIC(2.500, 0.900) = 1.1646

GAMIT/DGAMIT (Single/Double precision)
Evaluate the Tricomi form of the incomplete gamma function.

Usage
GAMIT(A, X)

Arguments

A — The integrand exponent parameter as per the comments. (Input)

X — The upper limit of the integral definition of GAMIT. (Input)
It must be nonnegative.

GAMIT — Function value. (Output)

56 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

Comments

Informational error
Type Code
 3 2 Result of GAMIT(A, X) is accurate to less than one-half precision

because A is too close to a negative integer.

Algorithm

The Tricomi’s incomplete gamma function is defined to be

γ γ
* (,)

(,)

() ()
a x

x a x

a

x

a
t e dt

a a
a

x

t= =
− −

−∞ −IΓ Γ
1

where γ(a, x) is the incomplete gamma function. See GAMI (page 53) for the
definition of γ(a, x).

The only general restriction on a is that it must not be too close to a negative
integer such that the accuracy of the result is less than half precision.
Furthermore, |γ∗(a, x)| must not underflow or overflow. Although γ∗(a, x) is well
defined for x > −∞, this algorithm does not calculate γ * (a, x) for negative x.

A slight deterioration of two or three digits of accuracy will occur when GAMIT is
very large or very small in absolute value because logarithmic variables are used.
Also, if the parameter a is very close to a negative integer (but not quite a
negative integer), there is a loss of accuracy which is reported if the result is less
than half machine precision.

The function GAMIT is based on a code by Gautschi (1979).

Example

In this example, γ∗(3.2, 2.1) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, GAMIT, VALUE, X
 EXTERNAL GAMIT, UMACH
C Compute
 A = 3.2
 X = 2.1
 VALUE = GAMIT(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ GAMIT(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
GAMIT(3.200, 2.100) = 0.0284

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 57

PSI/DPSI (Single/Double precision)
Evaluate the logarithmic derivative of the gamma function.

Usage
PSI(X)

Arguments

X — Argument for which the function value is desired. (Input)

PSI — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of PSI(X) is accurate to less than one-half precision

because X is too near a negative integer.

Algorithm

The psi function, also called the digamma function, is defined to be

ψ() ln ()
()

()
x

d

dx
x

x

x
= = ′Γ Γ

Γ

See GAMMA (page 44) for the definition of Γ(x).

The argument x must not be exactly zero or a negative integer, or ψ(x) is
undefined. Also, x must not be too close to a negative integer such that the
accuracy of the result is less than half precision.

Example

In this example, ψ(1.915) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL PSI, VALUE, X
 EXTERNAL PSI, UMACH
C Compute
 X = 1.915
 VALUE = PSI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ PSI(’, F6.3, ’) = ’, F6.3)
 END

Output
PSI(1.915) = 0.366

58 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

CPSI
Evaluate the logarithmic derivative of the gamma function for a complex
argument.

Usage
CPSI(ZIN)

Arguments

ZIN — Complex argument for which the logarithmic derivative of the gamma
function is desired. (Input)

CPSI — Complex function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of CPSI(ZIN) is accurate to less than one-half precision

because the argument is too near a negative integer.

Algorithm

The psi function, also called the digamma function, is defined to be

ψ() ln ()
()

()
z

d

dz
z

z

z
= = ′Γ Γ

Γ

See CGAMMA (page 46) for the definition of Γ(z).

The argument |z| must not be so small that 1/z and therefore ψ(z) overflows. If z is
close to a negative integer, the result is less accurate than half precision. If z is
exactly a negative integer, the result is undefined.

Example

In this example, ψ(1.9 + 4.3i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CPSI, VALUE, Z
 EXTERNAL CPSI, UMACH
C Compute
 Z = (1.9, 4.3)
 VALUE = CPSI(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CPSI(’, F6.3, ’,’, F6.3, ’) = (’, F6.3, ’,’, F6.3, ’)’)
 END

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 59

Output
CPSI(1.900, 4.300) = (1.507, 1.255)

POCH/DPOCH (Single/Double precision)
Evaluate a generalization of Pochhammer’s symbol.

Usage
POCH(A, X)

Arguments

A — The first argument. (Input)

X — The second, differential argument. (Input)

POCH — Function value. (Output)
The generalized Pochhammer symbol is Γ(a + x)/Γ(a).

Comments

1. Informational errors
Type Code
 3 2 Result of POCH(A, X) is accurate to less than one-half

precision because the absolute value of the X is too
large. Therefore, A + X cannot be evaluated accurately.

 3 2 Result of POCH(A, X) is accurate to less than one-half
precision because either A or A + X is too close to a
negative integer.

2. For X a nonnegative integer, POCH(A, X) is just Pochhammer’s symbol.

Algorithm

Pochhammer’s symbol is (a)Q = (a)(a − 1)…(a − n + 1) for n a nonnegative
integer. Pochhammer’s generalized symbol is defined to be

()
()

()
a

a x

ax = +Γ
Γ

See GAMMA (page 44) for the definition of Γ(x).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with
either gamma or log gamma functions can be especially unreliable when a is large
or x is small.

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is
sufficiently small. To insure that the result does not overflow or underflow, one
can keep the arguments a and a + x well within the range dictated by the gamma
function routine GAMMA or one can keep |x| small whenever a is large. POCH also

60 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

works for a variety of arguments outside these rough limits, but any more general
limits that are also useful are difficult to specify.

Example

In this example, (1.6)0.8 is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, POCH, VALUE, X
 EXTERNAL POCH, UMACH
C Compute
 A = 1.6
 X = 0.8
 VALUE = POCH(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ POCH(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
POCH(1.600, 0.800) = 1.3902

POCH1/DPOCH1 (Single/Double precision)
Evaluate a generalization of Pochhammer’s symbol starting from the first order.

Usage
POCH1(A, X)

Arguments

A — The first argument. (Input)

X — The second, differential argument. (Input)

POCH1 — Function value. (Output)
POCH1(A, X) = (POCH(A, X) − 1)/X.

Algorithm

Pochhammer’s symbol from the first order is defined to be

POCH1 a x
a

x

a x

a
xx,

() ()

()
/0 5 =

−
= +

−
1

1

Γ
Γ

where (a)[is Pochhammer’s generalized symbol. See POCH (page 59) for the
definition of (a)[. It is useful in special situations that require especially accurate
values when x is small. This specification is particularly suited for stability when
computing expressions such as

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 61

Γ
Γ

Γ
Γ

()

()

()

()
/ , ,

a x

a

b x

b
x a x b x

+ − +�
!

"
$# = −POCH1 POCH10 5 0 5

Note that POCH1(a, 0) = ψ(a). See PSI (page 57) for the definition of ψ(a).

When |x| is so small that substantial cancellation will occur if the straightforward
formula is used, we use an expansion due to fields and discussed by Luke (1969).

The ratio (a)[= Γ(a + x)/Γ(a) is written by Luke as (a + (x − 1)/2)[times a

polynomial in (a + (x − 1)/2)-2. To maintain significance in POCH1, we write for
positive a.

(a + (x − 1)/2)[= exp(x ln(a + (x − 1)/2)) = eT = 1 + qEXPRL(q)

where EXPRL = (e[− 1)/x. Likewise, the polynomial is written P = 1 + xP1(a, x).
Thus,

62 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

POCH1 (a, x) = ((a)[− 1)/x = EXPRL(q)(q/x + qP1(a, x)) + P1(a, x)

Substantial significance loss can occur if a + x or a are close to a negative integer
even when |x| is very small. To insure that the result does not overflow or
underflow, one can keep the arguments a and a + x well within the range dictated
by the gamma function routine GAMMA (page 44) or one can keep |x| small
whenever a is large. POCH also works for a variety of arguments outside these
rough limits, but any more general limits that are also useful are difficult to
specify.

Example

In this example, POCH1(1.6, 0.8) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL A, POCH1, VALUE, X
 EXTERNAL POCH1, UMACH
C Compute
 A = 1.6
 X = 0.8
 VALUE = POCH1(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ POCH1(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
POCH1(1.600, 0.800) = 0.4878

BETA/DBETA (Single/Double precision)
Evaluate the complete beta function.

Usage
BETA(A, B)

Arguments

A — First beta parameter. (Input)
It must be positive.

B — Second beta parameter. (Input)
It must be positive.

BETA — Function value. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 63

Comments

Informational error
Type Code
 2 1 The function underflows because A and/or B is too large.

Algorithm

The beta function is defined to be

β(,)
() ()

()
()a b

a b

a b
t t dta b=

+
= −− −IΓ Γ

Γ
1

0

1 11

See GAMMA (page 44) for the definition of Γ(x).

The function BETA requires that both arguments be positive. In addition, the
arguments must not be so large that the result underflows.

Example

In this example, β(2.2, 3.7) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, BETA, VALUE, X
 EXTERNAL BETA, UMACH
C Compute
 A = 2.2
 X = 3.7
 VALUE = BETA(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ BETA(’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
BETA(2.200, 3.700) = 0.0454

CBETA
Evaluate the complex complete beta function.

Usage
CBETA(A, B)

Arguments

A — Complex first beta distribution parameter. (Input)
It must be positive.

64 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

B — Complex second beta distribution parameter. (Input)
It must be positive.

CBETA — Complex function value. (Output)

Algorithm

The beta function is defined to be

β(,)
() ()

()
()a b

a b

a b
t t dta b=

+
= −− −IΓ Γ

Γ
1

0

1 11

See CGAMMA (page 46) for the definition of Γ(z).

The arguments a and a + b must not be close to negative integers. The arguments
should not be so large (near the real axis) that the result underflows. Also, a + b
should not be so far from the real axis that the result overflows.

Example

In this example, β(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX A, B, CBETA, VALUE
 EXTERNAL CBETA, UMACH
C Compute
 A = (1.7, 2.2)
 B = (3.7, 0.4)
 VALUE = CBETA(A, B)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (’ CBETA((’, F6.3, ’,’, F6.3, ’), (’, F6.3, ’,’, F6.3,
 & ’)) = (’, F6.3, ’,’, F6.3, ’)’)
 END

Output
CBETA((1.700, 2.200), (3.700, 0.400)) = (-0.033,-0.017)

ALBETA/DLBETA (Single/Double precision)
Evaluate the natural logarithm of the complete beta function for positive
arguments.

Usage
ALBETA(A, B)

Arguments

A — The first argument of the BETA function. (Input)
It must be greater than zero.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 65

B — The second argument of the BETA function. (Input)
It must be greater than zero.

ALBETA — Function value. (Output)
ALBETA returns ln β(A, B) = ln(Γ(A)Γ(B))/Γ(A + B).

Comments

Note that ln β(A, B) = ln β(B, A).

Algorithm

ALBETA computes ln β(a, b) = ln β(b, a). See BETA (page 62) for the definition of
β(a, b).

The function ALBETA is defined for a > 0 and b > 0. It returns accurate results
even when a or b is very small. It can overflow for very large arguments; this
error condition is not detected except by the computer hardware.

Example

In this example, ln β(2.2, 3.7) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL A, ALBETA, VALUE, X
 EXTERNAL ALBETA, UMACH
C Compute
 A = 2.2
 X = 3.7
 VALUE = ALBETA(A, X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, X, VALUE
99999 FORMAT (’ ALBETA(’, F6.3, ’,’, F6.3, ’) = ’, F8.4)
 END

Output
ALBETA(2.200, 3.700) = -3.0928

CLBETA
Evaluate the complex logarithm of the complete beta function.

Usage
CLBETA(A, B)

Arguments

A — Complex first beta distribution parameter. (Input)

B — Complex second beta distribution parameter. (Input)

66 • Chapter 4: Gamma Function and Related Functions IMSL MATH/LIBRARY Special Functions

CLBETA — Complex function value. (Output)

Algorithm

The function CLBETA computes ln β(a, b). See CBETA (page 63) for the definition
of β(a, b).

The arguments a, b and a + b must not be close to negative integers (even though
some combinations ought to be allowed). The arguments should not be so large
that the logarithm of the gamma function overflows (presumably an improbable
condition).

Example

In this example, ln β(1.7 + 2.2i, 3.7 + 0.4i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX A, B, CLBETA, VALUE
 EXTERNAL CLBETA, UMACH
C Compute
 A = (1.7, 2.2)
 B = (3.7, 0.4)
 VALUE = CLBETA(A, B)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) A, B, VALUE
99999 FORMAT (’ CLBETA((’, F6.3, ’,’, F6.3, ’), (’, F6.3, ’,’, F6.3,
 & ’)) = (’, F6.3, ’,’, F6.3, ’)’)
 END

Output
CLBETA((1.700, 2.200), (3.700, 0.400)) = (-3.280,-2.659)

BETAI/DBETAI (Single/Double precision)
Evaluate the incomplete beta function ratio.

Usage
BETAI(X, PIN, QIN)

Arguments

X — Upper limit of integration. (Input)
X must be in the interval (0.0, 1.0) inclusive.

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions • 67

BETAI — Probability that a random variable from a beta distribution having
parameters PIN and QIN will be less than or equal to X. (Output)

Algorithm

The incomplete beta function is defined to be

I p q
p q

p q p q
t t dt

x p q

x
x px q(,)

(,)

(,) (,)
()

, ,

= = −

≤ ≤ > >

− −Iβ
β β

1
1

0 1 0 0

1

0

1

for

See BETA (page 62) for the definition of β(p, q).

The parameters p and q must both be greater than zero. The argument x must lie
in the range 0 to 1. The incomplete beta function can underflow for sufficiently
small x and large p; however, this underflow is not reported as an error. Instead,
the value zero is returned as the function value.

The function BETAI is based on the work of Bosten and Battiste (1974).

Example

In this example, I0.61(2.2, 3.7) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BETAI, PIN, QIN, VALUE, X
 EXTERNAL BETAI, UMACH
C Compute
 X = 0.61
 PIN = 2.2
 QIN = 3.7
 VALUE = BETAI(X, PIN, QIN)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, PIN, QIN, VALUE
99999 FORMAT (’ BETAI(’, F6.3, ’,’, F6.3, ’,’, F6.3, ’) = ’, F6.4)
 END

Output
BETAI(0.610, 2.200, 3.700) = 0.8822

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 69

Chapter 5: Error Function
and Related Functions

Routines
5.1. Error Functions

Evaluate the error function, erf x...ERF 70
Evaluate the complementary error function, erfc x ERFC 71
Evaluate the scaled complementary error function,

e xx2
erfc ..ERFCE 73

Evaluate a scaled function related to erfc,

e izz− −
2

erfc 0 5 ..CERFE 75

Evaluate the inverse error function, erf-1 x...............................ERFI 76
Evaluate the inverse complementary error function,

erfc-1 x... ERFCI 77
Evaluate Dawson’s function..DAWS 79

5.2. Fresnel Integrals
Evaluate the cosine Fresnel integral, C(x)FRESC 81
Evaluate the sine Fresnel integral, S(x)FRESS 81

Usage Notes
The error function is

erf()x e dttx
= −I2 2

0π
The complementary error function is erfc(x) = 1 − erf(x). Dawson’s function is

e e dtx tx− I2 2

0

The Fresnel integrals are

70 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

C x t dt
x

() cos= �
�

�
�I π

2
2

0

and

S x t dt
x

() sin= �
�

�
�I π

2
2

0

They are related to the error function by

C z iS z
i

i z() () ()+ = + −
�
��

�
��

1

2
1erf

2

π

ERF/DERF (Single/Double precision)
Evaluate the error function.

Usage
ERF(X)

Arguments

X — Argument for which the function value is desired. (Input)

ERF — Function value. (Output)

Algorithm

The error function, erf(x), is defined to be

erf()x e dtt
x

= −I2 2

0π
All values of x are legal.

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 71

Figure 5-1 Plot of erf x

Example

In this example, erf(1.0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ERF, VALUE, X
 EXTERNAL ERF, UMACH
C Compute
 X = 1.0
 VALUE = ERF(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ERF(’, F6.3, ’) = ’, F6.3)
 END

Output
ERF(1.000) = 0.843

ERFC/DERFC (Single/Double precision)
Evaluate the complementary error function.

72 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage
ERFC(X)

Arguments

X — Argument for which the function value is desired. (Input)

ERFC — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too large.

Algorithm

The complementary error function, erfc(x), is defined to be

erfc(x e dtt
x

) = −∞I2 2

π
The argument x must not be so large that the result underflows. Approximately, x
should be less than

− ln
/

πs2 7 1 2

where s = AMACH(1) (page 240) is the smallest representable positive floating-
point number.

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 73

Figure 5-2 Plot of erfc x

Example

In this example, erfc(1.0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ERFC, VALUE, X
 EXTERNAL ERFC, UMACH
C Compute
 X = 1.0
 VALUE = ERFC(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ERFC(’, F6.3, ’) = ’, F6.3)
 END

Output
ERFC(1.000) = 0.157

ERFCE/DERFCE (Single/Double precision)
Evaluate the exponentially scaled complementary error function.

74 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage
ERFCE(X)

Arguments

X — Argument for which the function value is desired. (Input)

ERFCE — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too large.

Algorithm

The function ERFCE(X) computes

e xx2
 erfc 0 5

where erfc(x) is the complementary error function. See ERFC (page 71) for its
definition.

To prevent the answer from underflowing, x must be greater than

x bmin
~ ln(/)− − 2

where b = AMACH(2) is the largest representable floating-point number.

Example

In this example, ERFCE(1.0) = e1.0 erfc(1.0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ERFCE, VALUE, X
 EXTERNAL ERFCE, UMACH
C Compute
 X = 1.0
 VALUE = ERFCE(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ERFCE(’, F6.3, ’) = ’, F6.3)
 END

Output
ERFCE(1.000) = 0.428

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 75

CERFE/ZERFE (Single/Double precision)
Evaluate the complex scaled complemented error function.

Usage
CERFE(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CERFE — Complex function value. (Output)

Algorithm

Function CERFCE is defined to be

e iz ie e dtz z t

z

− − ∞
− = − I2 2 22

erfc()
π

Let b = AMACH(2) be the largest floating-point number. The argument z must
satisfy

z b≤

or else the value returned is zero. If the argument z does not satisfy (ℑz)2 − (ℜz)2
≤ log b, then b is returned. All other arguments are legal (Gautschi 1969, 1970).

Example

In this example, CERFE(2.5 + 2.5i) is computed and printed.
C Declare variables
 INTEGER NOUT
 COMPLEX CERFE, VALUE, Z
 EXTERNAL CERFE, UMACH
C Compute
 Z = (2.5, 2.5)
 VALUE = CERFE(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CERFE(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CERFE(2.500, 2.500) = (0.117, 0.108)

76 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

ERFI/DERFI (Single/Double precision)
Evaluate the inverse error function.

Usage
ERFI(X)

Arguments

X — Argument for which the function value is desired. (Input)

ERFI — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of ERFI(X) is accurate to less than one-half precision

because the absolute value of the argument is too large.

Algorithm

Function ERFI(X) computes the inverse of the error function erf x, defined in ERF
(page 70).

The function ERFI(X) is defined for |x| < 1. If x" < |x| < 1, then the answer will
be less accurate than half precision. Very approximately,

xmax / ()≈ −1 4ε π

where ε = AMACH(4) is the machine precision.

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 77

Figure 5-3 Plot of erf-1x

Example

In this example, erf-1(erf(1.0)) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ERF, ERFI, VALUE, X
 EXTERNAL ERF, ERFI, UMACH
C Compute
 X = ERF(1.0)
 VALUE = ERFI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ERFI(’, F6.3, ’) = ’, F6.3)
 END

Output
ERFI(0.843) = 1.000

ERFCI/DERFCI (Single/Double precision)
Evaluate the inverse complementary error function.

78 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage
ERFCI(X)

Arguments

X — Argument for which the function value is desired. (Input)

ERFCI — Function value. (Output)

Comments

Informational error
Type Code
 3 2 Result of ERFCI(X) is accurate to less than one-half precision

because the argument is too close to 2.0.

Algorithm

The function ERFCI(X) computes the inverse of the complementary error function
erfc x, defined in ERFC (page 71).

The function ERFCI(X) is defined for 0 < x < 2. If x" < x < 2, then the answer
will be less accurate than half precision. Very approximately,

xmax / ()≈ −2 4ε π

where ε = AMACH(4) is the machine precision.

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 79

Figure 5-4 Plot of erf-1x

Example

In this example, erfc-1(erfc(1.0)) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ERFC, ERFCI, VALUE, X
 EXTERNAL ERFC, ERFCI, UMACH
C Compute
 X = ERFC(1.0)
 VALUE = ERFCI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ERFCI(’, F6.3, ’) = ’, F6.3)
 END

Output
ERFCI(0.157) = 1.000

DAWS/DDAWS (Single/Double precision)
Evaluate Dawson’s function.

80 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

Usage
DAWS(X)

Arguments

X — Argument for which the function value is desired. (Input)

DAWS — Function value. (Output)

Comments

1. Informational error
Type Code
 2 1 The function underflows because the absolute value of

X is too large.

2. The Dawson function is closely related to the error function for
imaginary arguments.

Algorithm

Dawson’s function is defined to be

e e dtx t
x− I2 2

0

It is closely related to the error function for imaginary arguments.

So that Dawson’s function does not underflow, |x| must be less than 1/(2s). Here,
s = AMACH(1) is the smallest representable positive floating-point number.

Example

In this example, DAWS(1.0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL DAWS, VALUE, X
 EXTERNAL DAWS, UMACH
C Compute
 X = 1.0
 VALUE = DAWS(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ DAWS(’, F6.3, ’) = ’, F6.3)
 END

Output
DAWS(1.000) = 0.538

IMSL MATH/LIBRARY Special Functions Chapter 5: Error Function and Related Functions • 81

FRESC/DFRESC (Single/Double precision)
Evaluate the cosine Fresnel integral.

Usage
FRESC(X)

Arguments

X — Argument for which the function value is desired. (Input)

FRESC — Function value. (Output)

Algorithm

The cosine Fresnel integral is defined to be

C x t dt
x

() cos= �
�

�
�I π

2
2

0

All values of x are legal.

Example

In this example, C(1.75) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL FRESC, VALUE, X
 EXTERNAL FRESC, UMACH
C Compute
 X = 1.75
 VALUE = FRESC(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ FRESC(’, F6.3, ’) = ’, F6.3)
 END

Output
FRESC(1.750) = 0.322

FRESS/DFRESS (Single/Double precision)
Evaluate the sine Fresnel integral.

Usage
FRESS(X)

82 • Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument for which the function value is desired. (Input)

FRESS — Function value. (Output)

Algorithm

The sine Fresnel integral is defined to be

S x t dt
x

() sin= �
�

�
�I π

2
2

0

All values of x are legal.

Example

In this example, S(1.75) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL FRESS, VALUE, X
 EXTERNAL FRESS, UMACH
C Compute
 X = 1.75
 VALUE = FRESS(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ FRESS(’, F6.3, ’) = ’, F6.3)
 END

Output
FRESS(1.750) = 0.499

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 83

Chapter 6: Bessel Functions

Routines
6.1. Bessel Functions of Order 0 and 1

Evaluate J0(x) .. BSJ0 84
Evaluate J1(x) .. BSJ1 86
Evaluate Y0(x) ...BSY0 87
Evaluate Y1(x) ...BSY1 88
Evaluate I0(x).. BSI0 89
Evaluate I1(x).. BSI1 91
Evaluate K0(x) ...BSK0 92
Evaluate K1(x) ...BSK1 93

Evaluate e-_[_I0(x)...BSI0E 95

Evaluate e-_[_I1(x)...BSI1E 95
Evaluate exK0(x) ... BSK0E 96
Evaluate exK1(x) ... BSK1E 97

6.2. Series of Bessel Functions, Integer Order
Evaluate JN(x), k = 0, …, n − 1 ... BSJNS 98
Evaluate JN(z), k = 0, …, n − 1, z complex CBJNS 99
Evaluate IN(x), k = 0, …, n − 1 ... BSINS 100
Evaluate IN(z), k = 0, …, n − 1, z complexCBINS 102

6.3. Series of Bessel Functions, Real Order and Argument
Evaluate Jn�+�N(x), k = 0, …, n − 1 ..BSJS 103
Evaluate Yn�+�N(x), k = 0, …, n − 1... BSYS 105
Evaluate In�+�N(x), k = 0, …, n − 1 ..BSIS 106

Evaluate e-[In�+�N(x), k = 0, …, n − 1 BSIES 107
Evaluate Kn�+�N(x), k = 0, …, n − 1... BSKS 109

Evaluate e[Kn�+�N(x), k = 0, …, n − 1BSKES 110

84 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

6.4. Series of Bessel Functions, Real Order and Complex Argument
Evaluate Jn�+�N(z), k = 0, …, n − 1.. CBJS 112
Evaluate Yn�+�N(z), k = 0, …, n − 1 ...CBYS 113
Evaluate In�+�N(z), k = 0, …, n − 1..CBIS 115
Evaluate Kn�+�N(z), k = 0, …, n − 1 ...CBKS 117

Usage Notes
The following table lists the Bessel function routines by argument and order type:

Real Argument Complex Argument

Order Order

Function 0 1 integer real integer real

Jn(x) BSJ0
p. 84

BSJ1
p. 86

BSJNS
p. 98

BSJS
p. 103

CBJNS
p. 99

CBJS
p. 112

Yn(x) BSY0
p. 87

BSY1
p. 88

BSYS
p. 105

CBYS
p. 113

In(x) BSI0
p. 89

BSI1
p. 91

BSINS
p. 100

BSIS
p. 106

CBINS
p. 102

CBIS
p. 115

e-_[_In(x)
BSI0E
p. 95

BSI1E
p. 95

BSIES
p. 107

Kn(x) BSK0
p. 92

BSK1
p. 93

BSKS
p. 109

CBKS
p. 117

e-_[_Kn(x)
BSK0E
p. 96

BSK1E
p. 97

BSKES
p. 110

BSJ0/DBSJ0 (Single/Double precision)
Evaluate the Bessel function of the first kind of order zero.

Usage
BSJ0(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSJ0 — Function value. (Output)

Algorithm

The Bessel function J0(x) is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 85

J x x d
n

0 0

10 5 0 5= Iπ
θ θcos sin

To prevent the answer from being less accurate than half precision, |x| should be
smaller than

1 / ε
For the result to have any precision at all, |x| must be less than 1/ε. Here, ε is the
machine precision, ε = AMACH(4).

Figure 6-1 Plot of J0(x) and J1(x)

Example

In this example, J0(3.0) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSJ0, VALUE, X
 EXTERNAL BSJ0, UMACH
C Compute
 X = 3.0
 VALUE = BSJ0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSJ0(’, F6.3, ’) = ’, F6.3)

86 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

 END

Output
BSJ0(3.000) = -0.260

BSJ1/DBSJ1 (Single/Double precision)
Evaluate the Bessel function of the first kind of order one.

Usage
BSJ1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSJ1 — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because the absolute value of X is too

small.

Algorithm

The Bessel function J1(x) is defined to be

J x x d
n

1 0

10 5 0 5= −Iπ
θ θ θcos sin

The argument x must be zero or larger in absolute value than 2s to prevent J1(x)
from underflowing. Also, |x| should be smaller than

1 / ε
to prevent the answer from being less accurate than half precision. |x| must be less
than 1/ε for the result to have any precision at all. Here, ε is the machine
precision, ε = AMACH(4), and s = AMACH(1) is the smallest representable positive
floating-point number.

Example

In this example, J1(2.5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSJ1, VALUE, X
 EXTERNAL BSJ1, UMACH
C Compute

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 87

 X = 2.5
 VALUE = BSJ1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSJ1(’, F6.3, ’) = ’, F6.3)
 END

Output
BSJ1(2.500) = 0.497

BSY0/DBSY0 (Single/Double precision)
Evaluate the Bessel function of the second kind of order zero.

Usage
BSY0(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSY0 — Function value. (Output)

Algorithm

The Bessel function Y0(x) is defined to be

Y x x d
n

0 0

10 5 0 5= Iπ
θ θsin sin

To prevent the answer from being less accurate than half precision, x should be
smaller than

1 / ε
For the result to have any precision at all, |x| must be less than 1/ε. Here, ε is the
machine precision, ε = AMACH(4).

88 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Figure 6-2 Plot of Y0(x) and Y1(x)

Example

In this example, Y0(3.0) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSY0, VALUE, X
 EXTERNAL BSY0, UMACH
C Compute
 X = 3.0
 VALUE = BSY0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSY0(’, F6.3, ’) = ’, F6.3)
 END

Output
BSY0(3.000) = 0.377

BSY1/DBSY1 (Single/Double precision)
Evaluate the Bessel function of the second kind of order one.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 89

Usage
BSY1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSY1 — Function value. (Output)

Algorithm

The Bessel function Y1(x) is defined to be

Y x x d1 0

10 5 0 5= −Iπ
θ θ θ

π
sin sin

Y1(x) is defined for x > 0. To prevent the answer from being less accurate than
half precision, x should be smaller than

1 / ε
For the result to have any precision at all, |x| must be less than 1/ε. Here, ε is the
machine precision, ε = AMACH(4).

Example

In this example, Y1(3.0) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSY1, VALUE, X
 EXTERNAL BSY1, UMACH
C Compute
 X = 3.0
 VALUE = BSY1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSY1(’, F6.3, ’) = ’, F6.3)
 END

Output
BSY1(3.000) = 0.325

BSI0/DBSI0 (Single/Double precision)
Evaluate the modified Bessel function of the first kind of order zero.

Usage
BSI0(X)

90 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument for which the function value is desired. (Input)

BSI0 — Function value. (Output)

Algorithm

The Bessel function I0(x) is defined to be

I x x d0 0

10 5 0 5= Iπ
θ θ

π
cos cos

The absolute value of the argument x must not be so large that e_[_ overflows.

Figure 6-3 Plot of I0(x) and I1(x)

Example

In this example, I0(4.5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSI0, VALUE, X
 EXTERNAL BSI0, UMACH
C Compute
 X = 4.5
 VALUE = BSI0(X)
C Print the results

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 91

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSI0(’, F6.3, ’) = ’, F6.3)
 END

Output
BSI0(4.500) = 17.481

BSI1/DBSI1 (Single/Double precision)
Evaluate the modified Bessel function of the first kind of order one.

Usage
BSI1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSI1 — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because the absolute value of X is too

small.

Algorithm

The Bessel function I1(x) is defined to be

I x x d1 0

10 5 0 5= Iπ
θ θ θ

π
exp cos cos

The argument should not be so close to zero that I1(x) ≈ x/2 underflows, nor so

large in absolute value that e_[_ and, therefore, I1(x) overflows.

Example

In this example, I1(4.5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSI1, VALUE, X
 EXTERNAL BSI1, UMACH
C Compute
 X = 4.5
 VALUE = BSI1(X)
C Print the results
 CALL UMACH (2, NOUT)

92 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSI1(’, F6.3, ’) = ’, F6.3)
 END

Output
BSI1(4.500) = 15.389

BSK0/DBSK0 (Single/Double precision)
Evaluate the modified Bessel function of the third kind of order zero.

Usage
BSK0(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSK0 — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too large.

Algorithm

The Bessel function K0(x) is defined to be

K x x t dt0 0
0 5 0 5=

∞I cos sin

The argument must be larger than zero, but not so large that the result,
approximately equal to

π / 2x e x0 5 −

underflows.

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 93

Figure 6-4 Plot of K0(x) and K1(x)

Example

In this example, K0(0.5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSK0, VALUE, X
 EXTERNAL BSK0, UMACH
C Compute
 X = 0.5
 VALUE = BSK0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSK0(’, F6.3, ’) = ’, F6.3)
 END

Output
BSK0(0.500) = 0.924

BSK1/DBSK1 (Single/Double precision)
Evaluate the modified Bessel function of the third kind of order one.

94 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Usage
BSK1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSK1 — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is too large.

Algorithm

The Bessel function K1(x) is defined to be

K x x t t dt1 0
0 5 0 5=

∞I sin sin sin

The argument x must be large enough (> max(1/b, s)) that K1(x) does not
overflow, and x must be small enough that the approximate answer,

π / 2x e x0 5 −

does not underflow. Here, s is the smallest representable positive floating-point
number, s = AMACH(1) , and b = AMACH(2) is the largest representable floating-
point number.

Example

In this example, K1(0.5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BSK1, VALUE, X
 EXTERNAL BSK1, UMACH
C Compute
 X = 0.5
 VALUE = BSK1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSK1(’, F6.3, ’) = ’, F6.3)
 END

Output
BSK1(0.500) = 1.656

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 95

BSI0E/DBSI0E (Single/Double precision)
Evaluate the exponentially scaled modified Bessel function of the first kind of
order zero.

Usage
BSI0E(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSI0E — Function value. (Output)

Algorithm

Function BSI0E computes e-_[_ I0(x). For the definition of the Bessel function
I0(x), see BSI0 (page 89).

Example

In this example, BSI0E(4.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL BSI0E, VALUE, X
 EXTERNAL BSI0E, UMACH
C Compute
 X = 4.5
 VALUE = BSI0E(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSI0E(’, F6.3, ’) = ’, F6.3)
 END

Output
BSI0E(4.500) = 0.194

BSI1E/DBSI1E (Single/Double precision)
Evaluate the exponentially scaled modified Bessel function of the first kind of
order one.

Usage
BSI1E(X)

96 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument for which the function value is desired. (Input)

BSI1E — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because the absolute value of X is too

small.

Algorithm

Function BSI1E computes e-_[_ I1(x). For the definition of the Bessel function
I1(x), see BSI1 (page 91). The function BSI1E underflows if |x|/2 underflows.

Example

In this example, BSI1E(4.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL BSI1E, VALUE, X
 EXTERNAL BSI1E, UMACH
C Compute
 X = 4.5
 VALUE = BSI1E(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSI1E(’, F6.3, ’) = ’, F6.3)
 END

Output
BSI1E(4.500) = 0.171

BSK0E/DBSK0E (Single/Double precision)
Evaluate the exponentially scaled modified Bessel function of the third kind of
order zero.

Usage
BSK0E(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSK0E — Function value. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 97

Algorithm

Function BSK0E computes e[K0(x). For the definition of the Bessel function
K0(x), see BSK0 (page 92). The argument must be greater than zero for the result
to be defined.

Example

In this example, BSK0E(0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL BSK0E, VALUE, X
 EXTERNAL BSK0E, UMACH
C Compute
 X = 0.5
 VALUE = BSK0E(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSK0E(’, F6.3, ’) = ’, F6.3)
 END

Output
BSK0E(0.500) = 1.524

BSK1E/DBSK1E (Single/Double precision)
Evaluate the exponentially scaled modified Bessel function of the third kind of
order one.

Usage
BSK1E(X)

Arguments

X — Argument for which the function value is desired. (Input)

BSK1E — Function value. (Output)

Algorithm

Function BSK1E computes e[K1(x). For the definition of the Bessel function

K1(x), see BSK1 (page 93). The answer BSK1E = e[K1(x) ≈ 1/x overflows if x is
too close to zero.

Example

In this example, BSK1E(0.5) is computed and printed.
C Declare variables

98 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

 INTEGER NOUT
 REAL BSK1E, VALUE, X
 EXTERNAL BSK1E, UMACH
C Compute
 X = 0.5
 VALUE = BSK1E(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BSK1E(’, F6.3, ’) = ’, F6.3)
 END

Output
BSK1E(0.500) = 2.731

BSJNS/DBSJNS (Single/Double precision)
Evaluate a sequence of Bessel functions of the first kind with integer order and
real arguments.

Usage
CALL BSJNS (X, N, BS)

Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated.
(Input)

Its absolute value must be less than 105.

N — Number of elements in the sequence. (Input)
It must be a positive integer.

BS — Vector of length N containing the values of the function through the series.
(Output)
BS(I) contains the value of the Bessel function of order I − 1 at x for I = 1 to N.

Algorithm

The Bessel function JQ(x) is defined to be

J x x n dn 0 5 0 5= −I1
0π

θ θ θ
π

cos sin

The algorithm is based on a code due to Sookne (1973b) that uses backward
recursion with strict error control.

Example

In this example, JQ(10.0), n = 0, …, 9 is computed and printed.

C Declare variables

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 99

 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL BS(N), X
 EXTERNAL BSJNS, UMACH
C Compute
 X = 10.0
 CALL BSJNS (X, N, BS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (’ J sub ’, I2, ’ (’, F6.3, ’) = ’, F6.3)
 END

Output
J sub 0 (10.000) = -0.246
J sub 1 (10.000) = 0.043
J sub 2 (10.000) = 0.255
J sub 3 (10.000) = 0.058
J sub 4 (10.000) = -0.220
J sub 5 (10.000) = -0.234
J sub 6 (10.000) = -0.014
J sub 7 (10.000) = 0.217
J sub 8 (10.000) = 0.318
J sub 9 (10.000) = 0.292

CBJNS/DCBJNS (Single/Double precision)
Evaluate a sequence of Bessel functions of the first kind with integer order and
complex arguments.

Usage
CALL CBJNS (Z, N, CBS)

Arguments

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be less than 104 in absolute value.

N — Number of elements in the sequence. (Input)
It must be positive.

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order I − 1 at z for I = 1 to N.

100 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Algorithm

The complex Bessel function JQ(z) is defined to be

J z z n dn 0 5 0 5= −I1
0π

θ θ θ
π

cos sin

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972).
It uses backward recursion with strict error control.

Example

In this example, JQ(10 + 10i), n = 0, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=11)
C
 INTEGER K, NOUT
 COMPLEX CBS(N), Z
 EXTERNAL CBJNS, UMACH
C Compute
 Z = (10.0, 10.0)
 CALL CBJNS (Z, N, CBS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ J sub ’, I2, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)
 END

Output
J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
J sub 1 ((10.000,10.000)) = (-460.681,-2246.627)
J sub 2 ((10.000,10.000)) = (2044.245, -590.157)
J sub 3 ((10.000,10.000)) = (751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = (-920.394, -846.345)
J sub 6 ((10.000,10.000)) = (419.501, -843.607)
J sub 7 ((10.000,10.000)) = (665.930, 88.480)
J sub 8 ((10.000,10.000)) = (108.586, 439.392)
J sub 9 ((10.000,10.000)) = (-227.548, 176.165)
J sub 10 ((10.000,10.000)) = (-154.831, -76.050)

BSINS/DBSINS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the first kind with integer
order and real arguments.

Usage
CALL BSINS (X, N, BSI)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 101

Arguments

X — Real argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the
series. (Output)
BSI(I) contains the value of the Bessel function of order I − 1 at x for I = 1 to N.

Algorithm

The Bessel function IQ(x) is defined to be

I x x n dn 0 5 0 5 0 5= I1
0π

θ θ θ
π

exp cos cos

The input x must satisfy |x| ≤ log(b) where b = AMACH(2) is the largest
representable floating-point number.

The algorithm is based on a code due to Sookne (1973b), which uses backward
recursion.

Example

In this example, IQ(10.0), n = 0, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=11)
C
 INTEGER K, NOUT
 REAL BSI(N), X
 EXTERNAL BSINS, UMACH
C Compute
 X = 10.0
 CALL BSINS (X, N, BSI)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, BSI(K)
 10 CONTINUE
99999 FORMAT (’ I sub ’, I2, ’ (’, F6.3, ’) = ’, F9.3)
 END

Output
I sub 0 (10.000) = 2815.716
I sub 1 (10.000) = 2670.988
I sub 2 (10.000) = 2281.519
I sub 3 (10.000) = 1758.381
I sub 4 (10.000) = 1226.490
I sub 5 (10.000) = 777.188
I sub 6 (10.000) = 449.302

102 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

I sub 7 (10.000) = 238.026
I sub 8 (10.000) = 116.066
I sub 9 (10.000) = 52.319
I sub 10 (10.000) = 21.892

CBINS/DCBINS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the first kind with integer
order and complex arguments.

Usage
CALL CBINS (Z, N, CBS)

Arguments

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be less than 104 in absolute value.

N — Number of elements in the sequence. (Input)
It must be positive.

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order I − 1 at z for I = 1 to N.

Algorithm

The complex Bessel function IQ(z) is defined to be

I z z n dn 0 5 0 5= −I1
0π

θ θ θ
π

cos sin

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972).
It uses backward recursion with strict error control.

Example

In this example, IQ(10 + 10i), n = 0, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=11)
C
 INTEGER K, NOUT
 COMPLEX CBS(N), Z
 EXTERNAL CBINS, UMACH
C Compute
 Z = (10.0, 10.0)
 CALL CBINS (Z, N, CBS)
C Print the results

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 103

 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ I sub ’, I2, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)
 END

Output
I sub 0 ((10.000,10.000)) = (-2314.975, -411.563)
I sub 1 ((10.000,10.000)) = (-2246.627, -460.681)
I sub 2 ((10.000,10.000)) = (-2044.245, -590.157)
I sub 3 ((10.000,10.000)) = (-1719.746, -751.498)
I sub 4 ((10.000,10.000)) = (-1302.871, -880.632)
I sub 5 ((10.000,10.000)) = (-846.345, -920.394)
I sub 6 ((10.000,10.000)) = (-419.501, -843.607)
I sub 7 ((10.000,10.000)) = (-88.480, -665.930)
I sub 8 ((10.000,10.000)) = (108.586, -439.392)
I sub 9 ((10.000,10.000)) = (176.165, -227.548)
I sub 10 ((10.000,10.000)) = (154.831, -76.050)

BSJS/DBSJS (Single/Double precision)
Evaluate a sequence of Bessel functions of the first kind with real order and real
positive arguments.

Usage
CALL BSJS (XNU, X, N, BS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated.
(Input)
It must be nonnegative.

N — Number of elements in the sequence. (Input)

BS — Vector of length N containing the values of the function through the series.
(Output)
BS(I) contains the value of the Bessel function of order XNU + I − 1 at x for I = 1
to N.

Comments

Automatic workspace usage is

BSJS 2 ∗ N units, or
DBSJS 4 ∗ N units.

104 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The
reference is

CALL B2JS (XNU, X, N, BS, WK)

The additional argument is

WK — work array of length 2 ∗ N.

Algorithm

The Bessel function Jn(x) is defined to be

J x
x

x dν

ν
νπ

π ν
θ θ θ()

(/)

(/)
cos cos sin=

+ I2

1 2
2

0Γ
0 5

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses
backward recursion.

Example

In this example, Jn(2.4048256), ν = 0, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=11)
C
 INTEGER K, NOUT
 REAL BS(N), X, XNU
 EXTERNAL BSJS, UMACH
C Compute
 XNU = 0.0
 X = 2.4048256
 CALL BSJS (XNU, X, N, BS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (’ J sub ’, F6.3, ’ (’, F6.3, ’) = ’, F10.3)
 END

Output
J sub 0.000 (2.405) = 0.000
J sub 1.000 (2.405) = 0.519
J sub 2.000 (2.405) = 0.432
J sub 3.000 (2.405) = 0.199
J sub 4.000 (2.405) = 0.065
J sub 5.000 (2.405) = 0.016
J sub 6.000 (2.405) = 0.003
J sub 7.000 (2.405) = 0.001
J sub 8.000 (2.405) = 0.000
J sub 9.000 (2.405) = 0.000
J sub 10.000 (2.405) = 0.000

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 105

BSYS/DBSYS (Single/Double precision)
Evaluate a sequence of Bessel functions of the second kind with real nonnegative
order and real positive arguments.

Usage
CALL BSYS (XNU, X, N, BSY)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

BSY — Vector of length N containing the values of the function through the
series. (Output)
BSY(I) contains the value of the Bessel function of order I − 1 + XNU at x for
I = 1 to N.

Algorithm

The Bessel function Yn(x) is defined to be

Y x x d

e e e dtt t x t

ν
π

ν ν

π
θ νθ θ

π
νπ

() cos(sin)

cos sinh

= −

− +

I
I −∞ −

1

1

0

0
0 5

The variable ν must satisfy 0 ≤ ν < 1. If this condition is not met, then BSL is set to

−b. In addition, x must be in [xP, x0] where xP = 6(16-32) and x0 = 169. If x < xP,

then −b (b = AMACH(2), the largest representable number) is returned; and if x >
x0, then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody
1969; NATS FUNPACK 1976). It uses a special series expansion for small
arguments. For moderate arguments, an analytic continuation in the argument
based on Taylor series with special rational minimax approximations providing
starting values is employed. An asymptotic expansion is used for large arguments.

Example

In this example, Y0.015625�+�n�-�1(0.0078125), ν = 1, 2, 3 is computed and printed.

C Declare variables

106 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

 INTEGER N
 PARAMETER (N=3)
C
 INTEGER K, NOUT
 REAL BSY(N), X, XNU
 EXTERNAL BSYS, UMACH
C Compute
 XNU = 0.015625
 X = 0.0078125
 CALL BSYS (XNU, X, N, BSY)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BSY(K)
 10 CONTINUE
99999 FORMAT (’ Y sub ’, F6.3, ’ (’, F6.3, ’) = ’, F10.3)
 END

Output
Y sub 0.016 (0.008) = -3.189
Y sub 1.016 (0.008) = -88.096
Y sub 2.016 (0.008) = -22901.732

BSIS/DBSIS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the first kind with real order
and real positive arguments.

Usage
CALL BSIS (XNU, X, N, BSI)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated.
(Input)

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the
series. (Output)
BSI(I) contains the value of the Bessel function of order I − 1 + XNU at x for
I = 1 to N.

Algorithm

The Bessel function In(x) is defined to be

I x e d e dtx x t vt
ν

θπ

π
νθ θ νπ

π
() cos()

sin()cos cosh= −I I − −∞1
0 0

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 107

The input x must be nonnegative and less than or equal to log(b) (b = AMACH(2),
the largest representable number). The argument ν = XNU must satisfy 0 ≤ ν ≤ 1.

Function BSIS is based on a code due to Cody (1983), which uses backward
recursion.

Example

In this example, In�-�1(10.0), ν = 1, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL BSI(N), X, XNU
 EXTERNAL BSIS, UMACH
C Compute
 XNU = 0.0
 X = 10.0
 CALL BSIS (XNU, X, N, BSI)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, X, BSI(K)
 10 CONTINUE
99999 FORMAT (’ I sub ’, F6.3, ’ (’, F6.3, ’) = ’, F10.3)
 END

Output
I sub 0.000 (10.000) = 2815.717
I sub 1.000 (10.000) = 2670.988
I sub 2.000 (10.000) = 2281.519
I sub 3.000 (10.000) = 1758.381
I sub 4.000 (10.000) = 1226.491
I sub 5.000 (10.000) = 777.188
I sub 6.000 (10.000) = 449.302
I sub 7.000 (10.000) = 238.026
I sub 8.000 (10.000) = 116.066
I sub 9.000 (10.000) = 52.319

BSIES/DBSIES (Single/Double precision)
Evaluate a sequence of exponentially scaled modified Bessel functions of the first
kind with nonnegative real order and real positive arguments.

Usage
CALL BSIES (XNU, X, N, BSI)

108 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be nonnegative and less than 104.

N — Number of elements in the sequence. (Input)

BSI — Vector of length N containing the values of the function through the
series. (Output)
BSI(I) contains the value of the Bessel function of order I − 1 + XNU at x for I =
1 to N multiplied by exp(−X).

Algorithm

Function BSIES evaluates e-[In�+�N�-�1(x), for k = 1, …, n. For the definition of
In(x), see BSIS (page 106). The algorithm is based on a code due to Cody (1983),
which uses backward recursion.

Example

In this example, In�-�1(10.0), ν = 1, …, 10 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL BSI(N), X, XNU
 EXTERNAL BSIES, UMACH
C Compute
 XNU = 0.0
 X = 10.0
 CALL BSIES (XNU, X, N, BSI)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) X, XNU+K-1, X, BSI(K)
 10 CONTINUE
99999 FORMAT (’ exp(-’, F6.3, ’) * I sub ’, F6.3,
 & ’ (’, F6.3, ’) = ’, F6.3)
 END

Output
exp(-10.000) * I sub 0.000 (10.000) = 0.128
exp(-10.000) * I sub 1.000 (10.000) = 0.121
exp(-10.000) * I sub 2.000 (10.000) = 0.104
exp(-10.000) * I sub 3.000 (10.000) = 0.080
exp(-10.000) * I sub 4.000 (10.000) = 0.056
exp(-10.000) * I sub 5.000 (10.000) = 0.035
exp(-10.000) * I sub 6.000 (10.000) = 0.020

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 109

exp(-10.000) * I sub 7.000 (10.000) = 0.011
exp(-10.000) * I sub 8.000 (10.000) = 0.005
exp(-10.000) * I sub 9.000 (10.000) = 0.002

BSKS/DBSKS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the third kind of fractional
order.

Usage
CALL BSKS (XNU, X, NIN, BK)

Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than one in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated.
(Input)

NIN — Number of elements in the sequence. (Input)

BK — Vector of length NIN containing the values of the function through the
series. (Output)

Comments

1. If NIN is positive, BK(1) contains the value of the function of order XNU,
BK(2) contains the value of the function of order XNU + 1, … and
BK(NIN) contains the value of the function of order XNU + NIN − 1.

2. If NIN is negative, BK(1) contains the value of the function of order XNU,
BK(2) contains the value of the function of order XNU − 1, … and
BK(ABS(NIN)) contains the value of the function of order XNU + NIN + 1.

Algorithm

The Bessel function Kn(x) is defined to be

K x e i J ix Y ix xi
ν

νπ
ν ν

π π π
() () () arg/= − − < ≤

2 2
2 for

Currently, ν is restricted to be less than one in absolute value. A total of |n| values
is stored in the array BK. For positive n, BK(1) = Kn(x), BK(2) = Kn�+�1(x), …,
BK(n) = Kn�+�Q�-�1(x). For negative n, BK(1) = Kn(x), BK(2) = Kn�-�1(x), …, BK(|n|) =
Kn�+�Q�+�1.

BSKS is based on the work of Cody (1983).

110 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Example

In this example, Kn-1(10.0), ν = 1, …, 10 is computed and printed.

C Declare variables
 INTEGER NIN
 PARAMETER (NIN=10)
C
 INTEGER K, NOUT
 REAL BS(NIN), X, XNU
 EXTERNAL BSKS, UMACH
C Compute
 XNU = 0.0
 X = 10.0
 CALL BSKS (XNU, X, NIN, BS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, NIN
 WRITE (NOUT,99999) XNU+K-1, X, BS(K)
 10 CONTINUE
99999 FORMAT (’ K sub ’, F6.3, ’ (’, F6.3, ’) = ’, E10.3)
 END

Output
K sub 0.000 (10.000) = 0.178E-04
K sub 1.000 (10.000) = 0.186E-04
K sub 2.000 (10.000) = 0.215E-04
K sub 3.000 (10.000) = 0.273E-04
K sub 4.000 (10.000) = 0.379E-04
K sub 5.000 (10.000) = 0.575E-04
K sub 6.000 (10.000) = 0.954E-04
K sub 7.000 (10.000) = 0.172E-03
K sub 8.000 (10.000) = 0.336E-03
K sub 9.000 (10.000) = 0.710E-03

BSKES/DBSKES (Single/Double precision)
Evaluate a sequence of exponentially scaled modified Bessel functions of the
third kind of fractional order.

Usage
CALL BSKES (XNU, X, NIN, BKE)

Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated.
(Input)

NIN — Number of elements in the sequence. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 111

BKE — Vector of length NIN containing the values of the function through the
series. (Output)

Comments

1. If NIN is positive, BKE(1) contains EXP(X) times the value of the function
of order XNU, BKE(2) contains EXP(X) times the value of the function of
order XNU + 1, …, and BKE(NIN) contains EXP(X) times the value of the
function of order XNU + NIN − 1.

2. If NIN is negative, BKE(1) contains EXP(X) times the value of the
function of order XNU, BKE(2) contains EXP(X) times the value of the
function of order XNU − 1, …, and BKE(ABS(NIN)) contains EXP(X) times
the value of the function of order XNU + NIN + 1.

Algorithm

Function BSKES evaluates e[Kn�+�N�-�1(x), for k = 1, …, n. For the definition of
Kn(x), see BSKS (page 109).

Currently, ν is restricted to be less than 1 in absolute value. A total of |n| values is

stored in the array BKE. For n positive, BKE(1) contains e[Kν(x), BKE(2) contains

e[Kn�+�1(x), …, and BKE(N) contains e[Kn�+�Q�-�1(x). For n negative, BKE(1)

contains e[Kn(x), BKE(2) contains e[Kn�-�1(x), …, and BKE(|n|) contains e[Kn�+�Q�+
1(x). This routine is particularly useful for calculating sequences for large x
provided n ≤ x. (Overflow becomes a problem if n << x.) n must not be zero, and
x must not be greater than zero. Moreover, |ν| must be less than 1. Also, when |n|

is large compared with x, |ν + n| must not be so large that e[Kn+Q(x) ≈ e[Γ(|ν +

n|)/[2(x/2)_n�+�Q_] overflows.

BSKES is based on the work of Cody (1983).

Example

In this example, Kn�-�1�2(2.0), ν = 1, …, 6 is computed and printed.

C Declare variables
 INTEGER NIN
 PARAMETER (NIN=6)
C
 INTEGER K, NOUT
 REAL BKE(NIN), X, XNU
 EXTERNAL BSKES, UMACH
C Compute
 XNU = 0.5
 X = 2.0
 CALL BSKES (XNU, X, NIN, BKE)
C Print the results
 CALL UMACH (2, NOUT)

112 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

 DO 10 K=1, NIN
 WRITE (NOUT,99999) X, XNU+K-1, X, BKE(K)
 10 CONTINUE
99999 FORMAT (’ exp(’, F6.3, ’) * K sub ’, F6.3,
 & ’ (’, F6.3, ’) = ’, F8.3)
 END

Output
exp(2.000) * K sub 0.500 (2.000) = 0.886
exp(2.000) * K sub 1.500 (2.000) = 1.329
exp(2.000) * K sub 2.500 (2.000) = 2.880
exp(2.000) * K sub 3.500 (2.000) = 8.530
exp(2.000) * K sub 4.500 (2.000) = 32.735
exp(2.000) * K sub 5.500 (2.000) = 155.837

CBJS/DCBJS (Single/Double precision)
Evaluate a sequence of Bessel functions of the first kind with real order and
complex arguments.

Usage
CALL CBJS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than −1/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I − 1 at Z for I =
1 to N.

Comments

Informational errors
Type Code
 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

Algorithm

The Bessel function Jn(z) is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 113

J z z d e dt

z

z t vt
ν

π

π
θ νθ θ νπ

π
π

0 5 = −∞
− −

<

I I1

2

0 0
cos(sin)

sin()

arg

sinh

for

This code is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

This code computes Jn(z) from the modified Bessel function In(z) (see page 116),

using the following relation, with ρ = eLp/2:

Y z
I z z

I z z
v

v

v

()
(/) / arg

() arg /
=

− < ≤

− < ≤

%&'K
ρ ρ π π

ρ ρ π π

for

for

2

23 3

Example

In this example, J0�3�+�n�-�1(1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
 EXTERNAL CBJS, UMACH
C Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBJS (XNU, Z, N, CBS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ J sub ’, F6.3, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)
 END

Output
J sub 0.300 ((1.200, 0.500)) = (0.774, -0.107)
J sub 1.300 ((1.200, 0.500)) = (0.400, 0.159)
J sub 2.300 ((1.200, 0.500)) = (0.087, 0.092)
J sub 3.300 ((1.200, 0.500)) = (0.008, 0.024)

CBYS/DCBYS (Single/Double precision)
Evaluate a sequence of Bessel functions of the second kind with real order and
complex arguments.

114 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Usage
CALL CBYS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than −1/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I − 1 at Z for I =
1 to N.

Comments

1. Automatic workspace usage is

CBYS 2 ∗ N units, or
DCBYS 4 ∗ N units.

Workspace may be explicitly provided, if desired, by use of
C2YS/DC2YS . The reference is
CALL C2YS (XNU, Z, N, CBS, FK)

The additional argument is

FK — complex work vector of length N.

2. Informational errors
Type Code
 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

Algorithm

The Bessel function Yn(z) is defined to be

Y z z v d

v
e e vt e dt

z

v

vt vt z t

() sin(sin)

sin()
cos()

arg

sinh

= −

− +

<

I
I −∞

1

2

0

0

π
θ θ θ

π
π

π

π

for

This code is based on the code BESSEC of Barnett (1981) and Thompson and
Barnett (1987).

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 115

This code computes Yn(z) from the modified Bessel functions In(z) and Kn(z) (see
CBIS, page 115, and CBKS, page 117), using the following relation:

Y z e I z e K z zv i v i
vν

π
ν

π

π
π π() () () arg /() / /= − − < ≤+ −1 2 22

2 for

Example

In this example, Yn0.3 + n − 1(1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
 EXTERNAL CBYS, UMACH
C Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBYS (XNU, Z, N, CBS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ Y sub ’, F6.3, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)
 END

Output
Y sub 0.300 ((1.200, 0.500)) = (-0.013, 0.380)
Y sub 1.300 ((1.200, 0.500)) = (-0.716, 0.338)
Y sub 2.300 ((1.200, 0.500)) = (-1.048, 0.795)
Y sub 3.300 ((1.200, 0.500)) = (-1.625, 3.684)

CBIS/DCBIS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the first kind with real order
and complex arguments.

Usage
CALL CBIS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than −1/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

116 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I − 1 at Z for I =
1 to N.

Comments

Informational errors
Type Code
 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

Algorithm

The modified Bessel function In(z) is defined to be

I z e J ze zv
v i

v
i() () arg/ /= − < ≤− π π π π2 2

2
for

where the Bessel function Jn(z) is defined in BSJS (page 103).

This code is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

For large arguments, z, Temme’s (1975) algorithm is used to find In(z). The In(z)
values are recurred upward (if this is stable). This involves evaluating a continued
fraction. If this evaluation fails to converge, the answer may not be accurate. For
moderate and small arguments, Miller’s method is used.

Example

In this example, I0�3�+�n�-�1(1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
 EXTERNAL CBIS, UMACH
C Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBIS (XNU, Z, N, CBS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ I sub ’, F6.3, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)

IMSL MATH/LIBRARY Special Functions Chapter 6: Bessel Functions • 117

 END

Output
I sub 0.300 ((1.200, 0.500)) = (1.163, 0.396)
I sub 1.300 ((1.200, 0.500)) = (0.447, 0.332)
I sub 2.300 ((1.200, 0.500)) = (0.082, 0.127)
I sub 3.300 ((1.200, 0.500)) = (0.006, 0.029)

CBKS/DCBKS (Single/Double precision)
Evaluate a sequence of modified Bessel functions of the second kind with real
order and complex arguments.

Usage
CALL CBKS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater than −1/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of length N containing the values of the function through the
series. (Output)
CBS(I) contains the value of the Bessel function of order XNU + I − 1 at Z for
I = 1 to N.

Comments

1. Automatic workspace usage is

CBKS 2 ∗ N units, or
DCBKS 4 ∗ N units.

Workspace may be explicitly provided, if desired, by use of
C2KS/DC2KS. The reference is
CALL C2KS (XNU, Z, N, CBS, FK)

The additional argument is

FK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 One of the continued fractions failed.
 4 2 Only the first several entries in CBS are valid.

118 • Chapter 6: Bessel Functions IMSL MATH/LIBRARY Special Functions

Algorithm

The Bessel function Kn(z) is defined to be

K z e iJ iz Y iz zv
v i

v v() () () arg/= − − < ≤π π ππ

2 2
2 for

where the Bessel function Jn(z) is defined in CBJS (page 112) and Yn(z) is defined
in CBYS (page 113).

This code is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find
Kn(z). This involves evaluating a continued fraction. If this evaluation fails to
converge, the answer may not be accurate. For small z, a Neumann series is used
to compute Kn(z). Upward recurrence of the Kn(z) is always stable.

Example

In this example, K0�3�+�Y�-�1(1.2 + 0.5i), ν = 1, …, 4 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER K, NOUT
 REAL XNU
 COMPLEX CBS(N), Z
 EXTERNAL CBKS, UMACH
C Compute
 XNU = 0.3
 Z = (1.2, 0.5)
 CALL CBKS (XNU, Z, N, CBS)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) XNU+K-1, Z, CBS(K)
 10 CONTINUE
99999 FORMAT (’ K sub ’, F6.3, ’ ((’, F6.3, ’,’, F6.3,
 & ’)) = (’, F9.3, ’,’, F9.3, ’)’)
 END

Output
K sub 0.300 ((1.200, 0.500)) = (0.246, -0.200)
K sub 1.300 ((1.200, 0.500)) = (0.336, -0.362)
K sub 2.300 ((1.200, 0.500)) = (0.587, -1.126)
K sub 3.300 ((1.200, 0.500)) = (0.719, -4.839)

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 119

Chapter 7: Kelvin Functions

Routines
Evaluate ber0(x) ..BER0 121
Evaluate bei0(x) .. BEI0 122
Evaluate ker0(x).. AKER0 123
Evaluate kei0(x) ..AKEI0 124

Evaluate ber′0(x) .. BERP0 124
Evaluate bei0(x) ..BEIP0 125

Evaluate ker′0(x)...AKERP0 126

Evaluate kei′0(x) .. AKEIP0 127
Evaluate ber1(x) ..BER1 128
Evaluate bei1(x) .. BEI1 129
Evaluate ker1(x).. AKER1 130
Evaluate kei1(x) ..AKEI1 130

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964).
The Kelvin functions are related to the Bessel functions by the following
relations.

ber beiv v v
ix i x J xe+ = ()/3 4π

ker ()/ /
v v

i
v

ix i x e K xe+ = −kei π π2 4

The derivatives of the Kelvin functions are related to the values of the Kelvin
functions by the following:

2 1 1ber ber bei0′ = +x x x

2 1 1bei ber bei0′ = − +x x x

2 1 1ker ker kei0′ = +x x x

120 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

2 1 1kei ker kei0′ = − +x x x

Plots of berQ(x), beiQ(x), kerQ(x) and keiQ(x) for n = 0, 1 follow:

Figure 7-1 Plot of berQ(x) and beiQ(x)

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 121

Figure 7-2 Plot of kerQ(x) and keiQ(x)

BER0/DBER0 (Single/Double precision)
Evaluate the Kelvin function of the first kind, ber, of order zero.

Usage
BER0(X)

Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

BER0 — Function value. (Output)

Algorithm

The Kelvin function ber0(x) is defined to be ℜJ0(xe3pL/4). The Bessel function
J0(x) is defined in BSJ0 (page 84). Function BER0 is based on the work of
Burgoyne (1963).

122 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

Example

In this example, ber0(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BER0, VALUE, X
 EXTERNAL BER0, UMACH
C Compute
 X = 0.4
 VALUE = BER0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BER0(’, F6.3, ’) = ’, F6.3)
 END

Output
BER0(0.400) = 1.000

BEI0/DBEI0 (Single/Double precision)
Evaluate the Kelvin function of the first kind, bei, of order zero.

Usage
BEI0(X)

Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

BEI0 — Function value. (Output)

Algorithm

The Kelvin function bei0(x) is defined to be ℑJ0(xe3pL/4). The Bessel function
J0(x) is defined in BSJ0 (page 84). Function BEI0 is based on the work of
Burgoyne (1963).

In BEI0, x must be less than 119.

Example

In this example, bei0(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BEI0, VALUE, X
 EXTERNAL BEI0, UMACH
C Compute
 X = 0.4

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 123

 VALUE = BEI0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BEI0(’, F6.3, ’) = ’, F6.3)
 END

Output
BEI0(0.400) = 0.040

AKER0/DKER0 (Single/Double precision)
Evaluate the Kelvin function of the second kind, ker, of order zero.

Usage
AKER0(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKER0 — Function value. (Output)

Algorithm

The modified Kelvin function ker0(x) is defined to be ℜK0(xepL/4). The Bessel
function K0(x) is defined in BSK0 (page 92). Function AKER0 is based on the work
of Burgoyne (1963). If x < 0, then NaN (not a number) is returned. If x ≥ 119,
then zero is returned.

Example

In this example, ker0(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKER0, VALUE, X
 EXTERNAL AKER0, UMACH
C Compute
 X = 0.4
 VALUE = AKER0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKER0(’, F6.3, ’) = ’, F6.3)
 END

Output
AKER0(0.400) = 1.063

124 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

AKEI0/DKEI0 (Single/Double precision)
Evaluate the Kelvin function of the second kind, kei, of order zero.

Usage
AKEI0(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

AKEI0 — Function value. (Output)

Algorithm

The modified Kelvin function kei0(x) is defined to be ℑK0(xepL/4). The Bessel
function K0(x) is defined in BSK0 (page 92). Function AKEI0 is based on the work
of Burgoyne (1963).

In AKEI0, x must satisfy 0 ≤ x < 119. If x < 0, then NaN (not a number) is
returned. If x ≥ 119, then zero is returned.

Example

In this example, kei0(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKEI0, VALUE, X
 EXTERNAL AKEI0, UMACH
C Compute
 X = 0.4
 VALUE = AKEI0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKEI0(’, F6.3, ’) = ’, F6.3)
 END

Output
AKEI0(0.400) = -0.704

BERP0/DBERP0 (Single/Double precision)
Evaluate the derivative of the Kelvin function of the first kind, ber, of order zero.

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 125

Usage
BERP0(X)

Arguments

X — Argument for which the function value is desired. (Input)

BERP0 — Function value. (Output)

Algorithm

The function ber′0(x) is defined to be

d

dx
x ber0 0 5

where ber0(x) is a Kelvin function, see BER0 (page 121). Function BERP0 is based
on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, ber′0(0.6) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BERP0, VALUE, X
 EXTERNAL BERP0, UMACH
C Compute
 X = 0.6
 VALUE = BERP0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BERP0(’, F6.3, ’) = ’, F6.3)
 END

Output
BERP0(0.600) = -0.013

BEIP0/DBEIP0 (Single/Double precision)
Evaluate the derivative of the Kelvin function of the first kind, bei, of order zero.

Usage
BEIP0(X)

Arguments

X — Argument for which the function value is desired. (Input)

126 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

BEIP0 — Function value. (Output)

Algorithm

The function bei′0(x) is defined to be

d

dx
x bei0 0 5

where bei0(x) is a Kelvin function, see BEI0 (page 122). Function BEIP0 is based
on the work of Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, bei′0(0.6) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BEIP0, VALUE, X
 EXTERNAL BEIP0, UMACH
C Compute
 X = 0.6
 VALUE = BEIP0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BEIP0(’, F6.3, ’) = ’, F6.3)
 END

Output
BEIP0(0.600) = 0.300

AKERP0/DKERP0 (Single/Double precision)
Evaluate the derivative of the Kelvin function of the second kind, ker, of order
zero.

Usage
AKERP0(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKERP0 — Function value. (Output)

Algorithm

The function ker′0(x) is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 127

d

dx
x ker0 0 5

where ker0(x) is a Kelvin function, see AKER0 (page 123). Function AKERP0 is
based on the work of Burgoyne (1963). If x < 0, then NaN (not a number) is
returned. If x > 119, then zero is returned.

Example

In this example, ker′0(0.6) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKERP0, VALUE, X
 EXTERNAL AKERP0, UMACH
C Compute
 X = 0.6
 VALUE = AKERP0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKERP0(’, F6.3, ’) = ’, F6.3)
 END

Output
AKERP0(0.600) = -1.457

AKEIP0/DKEIP0 (Single/Double precision)
Evaluate the Kelvin function of the second kind, kei, of order zero.

Usage
AKEIP0(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKEIP0 — Function value. (Output)

Algorithm

The function kei′0(x) is defined to be

d

dx
x kei0 0 5

where kei0(x) is a Kelvin function, see AKEIP0 (page 127). Function AKEIP0 is
based on the work of Burgoyne (1963).

128 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

If x < 0, then NaN (not a number) is returned. If x > 119, then zero is returned.

Example

In this example, kei′0(0.6) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKEIP0, VALUE, X
 EXTERNAL AKEIP0, UMACH
C Compute
 X = 0.6
 VALUE = AKEIP0(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKEIP0(’, F6.3, ’) = ’, F6.3)
 END

Output
AKEIP0(0.600) = 0.348

BER1/DBER1 (Single/Double precision)
Evaluate the Kelvin function of the first kind, ber, of order one.

Usage
BER1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BER1 — Function value. (Output)

Algorithm

The Kelvin function ber1(x) is defined to be ℜJ1(xe3pL/4). The Bessel function
J1(x) is defined in BSJ1 (page 86). Function BER1 is based on the work of
Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, ber1(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BER1, VALUE, X
 EXTERNAL BER1, UMACH
C Compute

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 129

 X = 0.4
 VALUE = BER1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BER1(’, F6.3, ’) = ’, F6.3)
 END

Output
BER1(0.400) = -0.144

BEI1/DBEI1 (Single/Double precision)
Evaluate the Kelvin function of the first kind, bei, of order one.

Usage
BEI1(X)

Arguments

X — Argument for which the function value is desired. (Input)

BEI1 — Function value. (Output)

Algorithm

The Kelvin function bei1(x) is defined to be ℑJ1(xe3pL/4). The Bessel function
J1(x) is defined in BSJ1 (page 86). Function BEI1 is based on the work of
Burgoyne (1963).

If |x| > 119, then NaN (not a number) is returned.

Example

In this example, bei1(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BEI1, VALUE, X
 EXTERNAL BEI1, UMACH
C Compute
 X = 0.4
 VALUE = BEI1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BEI1(’, F6.3, ’) = ’, F6.3)
 END

Output
BEI1(0.400) = 0.139

130 • Chapter 7: Kelvin Functions IMSL MATH/LIBRARY Special Functions

AKER1/DKER1 (Single/Double precision)
Evaluate the Kelvin function of the second kind, ker, of order one.

Usage
AKER1(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKER1 — Function value. (Output)

Algorithm

The modified Kelvin function ker1(x) is defined to be e-pL/2ℜK1(xepL/4). The
Bessel function K1(x) is defined in BSK1 (page 93). Function AKER1 is based on
the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x ≥ 119, then zero is returned.

Example

In this example, ker1(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKER1, VALUE, X
 EXTERNAL AKER1, UMACH
C Compute
 X = 0.4
 VALUE = AKER1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKER1(’, F6.3, ’) = ’, F6.3)
 END

Output
AKER1(0.400) = -1.882

AKEI1/DKEI1 (Single/Double precision)
Evaluate the Kelvin function of the second kind, kei, of order one.

Usage
AKEI1(X)

IMSL MATH/LIBRARY Special Functions Chapter 7: Kelvin Functions • 131

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKEI1 — Function value. (Output)

Algorithm

The modified Kelvin function kei1(x) is defined to be e-pL/2ℑK1(xepL/4). The
Bessel function K1(x) is defined in BSK1 (page 93). Function AKER1 is based on
the work of Burgoyne (1963).

If x < 0, then NaN (not a number) is returned. If x ≥ 119, then zero is returned.

Example

In this example, kei1(0.4) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AKER1, VALUE, X
 EXTERNAL AKER1, UMACH
C Compute
 X = 0.4
 VALUE = AKER1(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AKER1(’, F6.3, ’) = ’, F6.3)
 END

Output
AKER1(0.400) = -1.882

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions • 133

Chapter 8: Airy Functions

Routines
Evaluate Ai(x)..AI 133
Evaluate Bi(x)..BI 134
Evaluate Ai′(x) ..AID 135
Evaluate Bi′(x) ..BID 136
Evaluate exponentially scaled Ai(x) ... AIE 137
Evaluate exponentially scaled Bi(x) ... BIE 138
Evaluate exponentially scaled Ai′(x)...AIDE 139
Evaluate exponentially scaled Bi′(x)...BIDE 140

AI/DAI (Single/Double precision)
Evaluate the Airy function.

Usage
AI(X)

Arguments

X — Argument for which the Airy function is desired. (Input)

AI — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is greater than XMAX, where

XMAX = (−3/2 ln(AMACH(1)))2/3.

Algorithm

The Airy function Ai(x) is defined to be

134 • Chapter 8: Airy Functions IMSL MATH/LIBRARY Special Functions

Ai x xt t dt
x

K x0 5 = +�
�

�
� = �

�
�
�

∞I1 1

3 3

2

3
3

0 2 1 3
3 2

π π
cos /

/

The Bessel function Kn(x) is defined in BSKS (page 109).

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the
answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision. Finally, x should be less than x" so the answer does not

underflow. Very approximately, x" = {−1.5 ln s}2/3, where s = AMACH(1), the
smallest representable positive number. If underflows are a problem for large x,
then the exponentially scaled routine AIE (page 137) should be used.

Example

In this example, Ai(−4.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AI, VALUE, X
 EXTERNAL AI, UMACH
C Compute
 X = -4.9
 VALUE = AI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AI(’, F6.3, ’) = ’, F6.3)
 END

Output
AI(-4.900) = 0.375

BI/DBI (Single/Double precision)
Evaluate the Airy function of the second kind.

Usage
BI(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

BI — Function value. (Output)

Algorithm

The Airy function of the second kind Bi(x) is defined to be

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions • 135

Bi x xt t dt xt t dt0 5 = −�
�

�
� + +�

�
�
�

∞ ∞I I1 1

3

1 1

30

3

0

3

π π
exp sin

It can also be expressed in terms of modified Bessel functions of the first kind,
In(x), and Bessel functions of the first kind, Jn(x) (see BSIS, page 106, and BSJS,
page 103):

Bi forx
x

I x I x x0 5 = �
�

�
� + �

�
�
�

�
!

"
$# >−3

2

3

2

3
01 3

3 2
1 3

3 2
/

/
/

/

and

Bi forx
x

J x J x x0 5= − �
�

�
� − �

�
�
�

�
!

"
$# <−

3

2

3

2

3
01 3

3 2
1 3

3 2
/

/
/

/

Let ε = AMACH(4), the machine precision. If x < −1.31ε-2/3, then the answer will

have no precision. If x < −1.31ε-1/3, the answer will be less accurate than half

precision. In addition, x should not be so large that exp[(2/3)x3/2] overflows. If
overflows are a problem, consider using the exponentially scaled form of the Airy
function of the second kind, BIE (page 138), instead.

Example

In this example, Bi(−4.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BI, VALUE, X
 EXTERNAL BI, UMACH
C Compute
 X = -4.9
 VALUE = BI(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BI(’, F6.3, ’) = ’, F6.3)
 END

Output
BI(-4.900) = -0.058

AID/DAID (Single/Double precision)
Evaluate the derivative of the Airy function.

Usage
AID(X)

136 • Chapter 8: Airy Functions IMSL MATH/LIBRARY Special Functions

Arguments

X — Argument for which the Airy function value is desired. (Input)

AID — Function value. (Output)

Comments

Informational error
Type Code
 2 1 The function underflows because X is greater than XMAX, where

XMAX = −3/2 ln(AMACH(1)).

Algorithm

The function Ai′(x) is defined to be the derivative of the Airy function, Ai(x) (see
AI, page 133).

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the
answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision. Finally, x should be less than x" so that the answer does not
underflow. Very approximately, x" = {−1.5 ln s}, where s = AMACH(1), the
smallest representable positive number. If underflows are a problem for large x,
then the exponentially scaled routine AIDE (page 139) should be used.

Example

In this example, Ai′(−4.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL AID, VALUE, X
 EXTERNAL AID, UMACH
C Compute
 X = -4.9
 VALUE = AID(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AID(’, F6.3, ’) = ’, F6.3)
 END

Output
AID(-4.900) = 0.147

BID/DBID (Single/Double precision)
Evaluate the derivative of the Airy function of the second kind.

Usage
BID(X)

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions • 137

Arguments

X — Argument for which the Airy function value is desired. (Input)

BID — Function value. (Output)

Algorithm

The function Bi′(x) is defined to be the derivative of the Airy function of the
second kind, Bi(x) (see BI, page 134).

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the
answer will be less accurate than half precision. In addition, x should not be so

large that exp[(2/3)x3/2] overflows. If overflows are a problem, consider using
BIDE (page 140) instead. Here, ε = AMACH(4) is the machine precision.

Example

In this example, Bi′(−4.9) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL BID, VALUE, X
 EXTERNAL BID, UMACH
C Compute
 X = -4.9
 VALUE = BID(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BID(’, F6.3, ’) = ’, F6.3)
 END

Output
BID(-4.900) = 0.827

AIE/DAIE (Single/Double precision)
Evaluate the exponentially scaled Airy function.

Usage
AIE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

AIE — Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy
function, e ζAi(X), for positive arguments where

138 • Chapter 8: Airy Functions IMSL MATH/LIBRARY Special Functions

ζ = 2

3
X3/2

Algorithm

The exponentially scaled Airy function is defined to be

AIE x
x x

e x xx
0 5 0 5

0 5
= ≤

>

%
&K
'K

Ai if

Ai if

0

02 3 3 2/ /

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, then
the answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision.

Example

In this example, AIE(0.49) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AIE, VALUE, X
 EXTERNAL AIE, UMACH
C Compute
 X = 0.49
 VALUE = AIE(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AIE(’, F6.3, ’) = ’, F6.3)
 END

Output
AIE(0.490) = 0.294

BIE/DBIE (Single/Double precision)
Evaluate the exponentially scaled Airy function of the second kind.

Usage
BIE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

BIE — Function value. (Output)
The Airy function of the second kind for negative arguments and the

exponentially scaled Airy function of the second kind, ezBi(X), for positive
arguments where

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions • 139

ζ = − 2
3

3 2
X

/

Algorithm

The exponentially scaled Airy function of the second kind is defined to be

BIE x
x x

e x x
x

0 5 0 5
0 5

=
≤

>

%
&K
'K −
Bi if

Bi if

0

0
2 3 3 2/ /

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, then
the answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision.

Example

In this example, BIE(0.49) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL BIE, VALUE, X
 EXTERNAL BIE, UMACH
C Compute
 X = 0.49
 VALUE = BIE(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BIE(’, F6.3, ’) = ’, F6.3)
 END

Output
BIE(0.490) = 0.675

AIDE/DAIDE (Single/Double precision)
Evaluate the exponentially scaled derivative of the Airy function.

Usage
AIDE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially

scaled derivative of the Airy function, ezAi ′(X), for positive arguments where

ζ = − 2

3
X3/2

140 • Chapter 8: Airy Functions IMSL MATH/LIBRARY Special Functions

Algorithm

The exponentially scaled derivative of the Airy function is defined to be

AIDE x
x x

e x xx
0 5 0 5

0 5
= ′ ≤

′ >

%
&K
'K
Ai if

Ai if

0

02 3 3 2/ /

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, then
the answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision.

Example

In this example, AIDE(0.49) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AIDE, VALUE, X
 EXTERNAL AIDE, UMACH
C Compute
 X = 0.49
 VALUE = AIDE(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ AIDE(’, F6.3, ’) = ’, F6.3)
 END

Output
AIDE(0.490) = -0.284

BIDE/DBIDE (Single/Double precision)
Evaluate the exponentially scaled derivative of the Airy function of the second
kind.

Usage
BIDE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

BIDE — Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and

the exponentially scaled derivative of the Airy function of the second kind, ezBi′
(X), for positive arguments where

ζ = −
2

3
3 2X /

IMSL MATH/LIBRARY Special Functions Chapter 8: Airy Functions • 141

Algorithm

The exponentially scaled derivative of the Airy function of the second kind is
defined to be

BIDE x
x x

e x xx
0 5 0 5

0 5
= ′ ≤

′ >

%
&K
'K −
Bi if

Bi if

0

02 3 3 2/ /

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, then
the answer will be less accurate than half precision. Here, ε = AMACH(4) is the
machine precision.

Example

In this example, BIDE(0.49) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL BIDE, VALUE, X
 EXTERNAL BIDE, UMACH
C Compute
 X = 0.49
 VALUE = BIDE(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ BIDE(’, F6.3, ’) = ’, F6.3)
 END

Output
BIDE(0.490) = 0.430

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals • 143

Chapter 9: Elliptic Integrals

Routines
Evaluate the complete elliptic integral of the first kind, K(x)...... ELK 145
Evaluate the complete elliptic integral of the second kind,
E(x).. ELE 147
Evaluate Carlson’s elliptic integral of the first kind,
R)(x, y, z) ..ELRF 148
Evaluate Carlson’s elliptic integral of the second kind,
R'(x, y, z)... ELRD 149
Evaluate Carlson’s elliptic integral of the third kind,
R-(x, y, z) .. ELRJ 150
Evaluate a special case of Carlson’s elliptic integral,
R&(x, y, z) ... ELRC 151

Usage Notes
The notation used in this chapter follows that of Abramowitz and Stegun (1964)
and Carlson (1979).

The complete elliptic integral of the first kind is

K m m d0 5 3 8= −I −
1

0

2 1 2
sin2θ θ

π/ /

and the complete elliptic integral of the second kind is

E m m d0 5 3 8= −I 1
0

2 1 2
sin2θ θ

π/ /

Instead of the parameter m, the modular angle α is sometimes used with m = sin2

α. Also used is the modulus k with k2 = m.

144 • Chapter 9: Elliptic Integrals IMSL MATH/LIBRARY Special Functions

E k k d

R k k R kF D

0 5 3 8
3 8 3 8

= −

= − − −

I 1

0 1 1
1

3
0 1 1

2 2

0

2 1 2

2 2 2

sin

, , , ,

/ /θ θ
π

Carlson Elliptic Integrals

The Carlson elliptic integrals are defined by Carlson (1979) as follows:

R x y z
dt

t x t y t z
F , , /0 5 0 50 50 5=

+ + +

∞I1

2 1 20

R x y
dt

t x t y
C , /0 5

0 50 5
=

+ +

∞I1

2 2 1 20

R x y z
dt

t x t y t z t
J , , , /ρ

ρ
0 5

0 50 50 50 5
=

+ + + +

∞I3

2 2 1 20

R x y z
dt

t x t y t z
D , , /0 5

0 50 50 5
=

+ + +

∞I3

2 3 1 20

The standard Legendre elliptic integrals can be written in terms of the Carlson
functions as follows (these relations are from Carlson (1979)):

F k k d

R kF

φ θ θ

φ φ φ

φ
,

cos , sin ,

/0 5 3 8
0 5 3 8

= −

= −

I −
1

1 1

2

0

1 2

2 2 2

sin

sin

2

E k k d

R k k R kF D

φ θ θ

φ φ φ φ φ φ

φ
,

, , , ,

/0 5 3 8
0 5 3 8 0 5 3 8

= −

= − − −

I 1

1 1
1

3
1 1

2

0

1 2

2 2 3 2

sin

sin cos sin sin cos sin

2

2 2 2 2

∏ = + −

= − − − +

I − −
φ θ θ θ

φ φ φ φ φ φ φ

φ
, ,

, , , ,

/
k n n k d

R k
n

k R k nF D

0 5 3 8 3 8
0 5 3 8 0 5 3 8

1 1

1 1
3

1 1

0

1
2 1 2

2 2 3 2

sin sin

sin cos sin sin cos sin sin

2 2

2 2 2 2 2

D k n k d

R kD

φ θ θ θ

φ φ φ

φ
, ,

, ,

/0 5 3 8
0 5 3 8

= −

= −

I −
sin sin

sin cos sin

2 2

2 2

0

2 1 2

3 2

1

1

3
1 1

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals • 145

K k k d

R kF

0 5 3 8
3 8

= −

= −

I −1

0 1 1

2

0

2 1 2

2

sin2 θ θ
π/ /

, ,

E k k d

R k k R kF D

0 5 3 8
3 8 3 8

= −

= − − −

I 1

0 1 1
1

3
0 1 1

2

0

2 1 2

2 2 2

sin2 θ θ
π/ /

, , , ,

The function R&(x, y) is related to inverse trigonometric and inverse hyperbolic
functions.

ln

sin

sinh

cos

cosh

tan

tanh

cot

x x R
x

x x

x xR x x

x xR x x

x x R x x

x x R x x

x xR x x

x xR x x

x R x x x

c

c

c

c

c

c

c

c

= − +�
�

�
�

�
!

"
$# < < ∞

= − − ≤ ≤

= + − ∞ < < ∞

= − ≤ ≤

= − ≤ < ∞

= + −∞ < < ∞

= − − < <

= + < < ∞

−

−

−

−

−

−

−

1
1

2
0

1 1 1 1

1 1

1 1 0 1

1 1 1

1 1

1 1 1 1

1 0

1 2

1 2

1 2 2

1 2 2

1 2

1 2

1 2 2

0 5
3 8
3 8

3 8
3 8

3 8
3 8

3 8

,

,

,

,

,

,

,

,

coth− = − < < ∞1 2 2 1 1x R x x xc ,3 8

ELK/DELK (Single/Double precision)
Evaluate the complete elliptic integral of the kind K(x).

Usage
ELK(X)

Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than 1.

ELK — Function value. (Output)

146 • Chapter 9: Elliptic Integrals IMSL MATH/LIBRARY Special Functions

Algorithm

The complete elliptic integral of the first kind is defined to be

K x
d

x
x0 5 =

−
≤ <I θ

θ

π

1
11 20

2

sin
for 0

2 /

/

The argument x must satisfy 0 ≤ x < 1; otherwise, ELK is set to b = AMACH(2), the
largest representable floating-point number.

The function K(x) is computed using the routine ELRF (page 148) and the relation
K(x) = R)(0, 1 − x, 1).

Figure 9-1 Plot of K(x) and E(x)

Example

In this example, K(0) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ELK, VALUE, X
 EXTERNAL ELK, UMACH
C Compute
 X = 0.0
 VALUE = ELK(X)
C Print the results
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals • 147

 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ELK(’, F6.3, ’) = ’, F6.3)
 END

Output
ELK(0.000) = 1.571

ELE/DELE (Single/Double precision)
Evaluate the complete elliptic integral of the second kind E(x).

Usage
ELE(X)

Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than or equal to 1.

ELE — Function value. (Output)

Algorithm

The complete elliptic integral of the second kind is defined to be

E x x d x0 5 = − ≤ <I 1 1
0

2 1 2
sin for 02 θ θ

π/ /

The argument x must satisfy 0 ≤ x < 1; otherwise, ELE is set to b = AMACH(2), the
largest representable floating-point number.

The function E(x) is computed using the routines ELRF, page 148, and ELRD,
page 149. The computation is done using the relation

E x R x
x

R xF D0 5 0 5 0 5= − − −0 1 1
3

0 1 1, , , ,

For a plot of E(x), see Figure 9.1 on page 146.

Example

In this example, E(0.33) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL ELE, VALUE, X
 EXTERNAL ELE, UMACH
C Compute
 X = 0.33
 VALUE = ELE(X)
C Print the results
 CALL UMACH (2, NOUT)

148 • Chapter 9: Elliptic Integrals IMSL MATH/LIBRARY Special Functions

 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ ELE(’, F6.3, ’) = ’, F6.3)
 END

Output
ELE(0.330) = 1.432

ELRF/DELRF (Single/Double precision)
Evaluate Carlson’s incomplete elliptic integral of the first kind R)(X, Y, Z).

Usage
ELRF(X, Y, Z)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

ELRF — Function value. (Output)

Algorithm

The Carlson’s complete elliptic integral of the first kind is defined to be

R x y z
dt

t x t y t z
F , , /0 5 0 50 50 5=

+ + +

∞I1

2 1 20

The arguments must be nonnegative and less than or equal to b/5. In addition, x +
y, x + z, and y + z must be greater than or equal to 5s. Should any of these
conditions fail, ELRF is set to b. Here, b = AMACH(2) is the largest and
s = AMACH(1) is the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

In this example, R)(0, 1, 2) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ELRF, VALUE, X, Y, Z
 EXTERNAL ELRF, UMACH
C Compute

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals • 149

 X = 0.0
 Y = 1.0
 Z = 2.0
 VALUE = ELRF(X, Y, Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (’ ELRF(’, F6.3, ’,’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
ELRF(0.000, 1.000, 2.000) = 1.311

ELRD/DELRD (Single/Double precision)
Evaluate Carlson’s incomplete elliptic integral of the second kind R'(X, Y, Z).

Usage
ELRD(X, Y, Z)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be positive.

ELRD — Function value. (Output)

Algorithm

The Carlson’s complete elliptic integral of the second kind is defined to be

R x y z
dt

t x t y t z
D , , /0 5

0 50 50 5
=

+ + +

∞I3

2 3 1 20

The arguments must be nonnegative and less than or equal to 0.69(−ln ε)1/9�s-2/3
where ε = AMACH(4) is the machine precision, s = AMACH(1) is the smallest
representable positive number. Furthermore, x + y and z must be greater than

max{3s2/3, 3/b2/3}, where b = AMACH(2) is the largest floating-point number. If
any of these conditions are false, then ELRD is set to b.

The function ELRD is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

150 • Chapter 9: Elliptic Integrals IMSL MATH/LIBRARY Special Functions

Example

In this example, R'(0, 2, 1) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ELRD, VALUE, X, Y, Z
 EXTERNAL ELRD, UMACH
C Compute
 X = 0.0
 Y = 2.0
 Z = 1.0
 VALUE = ELRD(X, Y, Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (’ ELRD(’, F6.3, ’,’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
ELRD(0.000, 2.000, 1.000) = 1.797

ELRJ/DELRJ (Single/Double precision)
Evaluate Carlson’s incomplete elliptic integral of the third kind R-(X, Y, Z, RHO)

Usage
ELRJ(X, Y, Z, RHO)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO — Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

ELRJ — Function value. (Output)

Algorithm

The Carlson’s complete elliptic integral of the third kind is defined to be

R x y z
dt

t x t y t z t
J , , , /ρ

ρ
0 5

0 50 50 50 5
=

+ + + +

∞I3

2 2 1 20

IMSL MATH/LIBRARY Special Functions Chapter 9: Elliptic Integrals • 151

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be

greater than or equal to (5s)1/3 and less than or equal to .3(b/5)1/3, where
s = AMACH(1) is the smallest representable floating-point number. Should any of
these conditions fail, ELRF is set to b = AMACH(2), the largest floating-point
number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

In this example, R-(2, 3, 4, 5) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ELRJ, RHO, VALUE, X, Y, Z
 EXTERNAL ELRJ, UMACH
C Compute
 X = 2.0
 Y = 3.0
 Z = 4.0
 RHO = 5.0
 VALUE = ELRJ(X, Y, Z, RHO)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, RHO, VALUE
99999 FORMAT (’ ELRJ(’, F6.3, ’,’, F6.3, ’,’, F6.3, ’,’, F6.3,
 & ’) = ’, F6.3)
 END

Output
ELRJ(2.000, 3.000, 4.000, 5.000) = 0.143

ELRC/DELRC (Single/Double precision)
Evaluate an elementary integral from which inverse circular functions, logarithms
and inverse hyperbolic functions can be computed.

Usage
ELRC(X, Y)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

ELRC — Function value. (Output)

152 • Chapter 9: Elliptic Integrals IMSL MATH/LIBRARY Special Functions

Comments

The sum X + Y must be greater than or equal to ARGMIN and both X and Y must be
less than or equal to ARGMAX. ARGMIN = s * 5 and ARGMAX = b/5, where s is the
machine minimum (AMACH(1)) and b is the machine maximum (AMACH(2)).

Algorithm

The special case of Carlson’s complete elliptic integral of the first kind is defined
to be

R x y
dt

t x t y
C , /0 5

0 50 5
=

+ +

∞I1

2 2 1 20

The argument x must be nonnegative, y must be positive, and x + y must be less
than or equal to b/5 and greater than or equal to 5s. If any of these conditions are
false, then ELRC is set to b. Here, b = AMACH(2) is the largest and s = AMACH(1) is
the smallest representable floating-point number.

The function ELRF is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

In this example, R&(2.25, 2.0) is computed and printed.

C Declare variables
 INTEGER NOUT
 REAL ELRF, VALUE, X, Y, Z
 EXTERNAL ELRF, UMACH
C Compute
 X = 0.0
 Y = 1.0
 Z = 2.0
 VALUE = ELRF(X, Y, Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, Y, Z, VALUE
99999 FORMAT (’ ELRF(’, F6.3, ’,’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
ELRF(0.000, 1.000, 2.000) = 1.311

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 153

Chapter 10: Elliptic and Related
Functions

Routines
10.1. Weierstrass Elliptic and Related Functions

Lemninscatic case .. CWPL 154
Lemninscatic case derivative ..CWPLD 155
Equianharmonic case .. CWPQ 156
Equianharmonic case derivative ..CWPQD 157

10.2. Jacobi Elliptic Functions
Jacobi function sn(x, m) (real argument)EJSN 158
Jacobi function sn(z, m) (complex argument) CEJSN 159
Jacobi function cn(x, m) (real argument) EJCN 160
Jacobi function cn(z, m) (complex argument)CEJCN 162
Jacobi function dn(x, m) (real argument) EJDN 163
Jacobi function dn(z, m) (complex argument)......................CEJDN 164

Usage Notes
Elliptic functions are doubly periodic, single-valued complex functions of a single
variable that are analytic, except at a finite number of poles. Because of the
periodicity, we need consider only the fundamental period parallelogram. The
irreducible number of poles, counting multiplicities, is the order of the elliptic
function. The simplest, non-trivial, elliptic functions are of order two.

The Weierstrass elliptic functions, ℘(z, ω, ω′) have a double pole at z = 0 and so
are of order two. Here, 2ω and 2ω′ are the periods.

The Jacobi elliptic functions each have two simple poles and so are also of order
two. The period of the functions is as follows:

Function Periods
sn(x, m) 4K(m) 2iK′(m)

154 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

cn(x, m) 4K(m) 4iK′(m)
dn(x, m) 2K(m) 4iK′(m)

The function K(m) is the complete elliptic integral, see ELK (page 145), and K′(m)
= K(1 − m).

CWPL/ZWPL (Single/Double precision)
Evaluate the Weierstrass’ ℘ function in the lemniscatic case for complex
argument with unit period parallelogram.

Usage
CWPL(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CWPL — Complex function value. (Output)

Algorithm

The Weierstrass’ ℘ function, ℘(z) = ℘(z | ω, ω′), is an elliptic function of order
two with periods 2ω and 2ω′ and a double pole at z = 0. CWPL(Z) computes ℘(z |
ω, ω′) with 2ω = 1 and 2ω′ = i.

The input argument is first reduced to the fundamental parallelogram of all z
satisfying −1/2 ≤ ℜz ≤ 1/2 and −1/2 ≤ ℑz ≤ 1/2. Then, a rational approximation is
used.

All arguments are valid with the exception of the lattice points z = m + ni, which
are the poles of CWPL. If the argument is a lattice point, then b = AMACH(2) , the
largest floating-point number, is returned. If the argument has modulus greater

than 10ε-1, then NaN (not a number) is returned. Here, ε = AMACH(4) is the
machine precision.

Function CWPL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, ℘(0.25 + 0.25i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CWPL, VALUE, Z
 EXTERNAL CWPL, UMACH
C Compute
 Z = (0.25, 0.25)
 VALUE = CWPL(Z)
C Print the results
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 155

 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CWPL(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CWPL(0.250, 0.250) = (0.000,-6.875)

CWPLD/ZWPLD (Single/Double precision)
Evaluate the first derivative of the Weierstrass’ ℘ function in the lemniscatic
case for complex argument with unit period parallelogram.

Usage
CWPLD(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CWPLD — Complex function value. (Output)

Algorithm

The Weierstrass’ ℘ function, ℘(z) = ℘(z | ω, ω′), is an elliptic function of order
two with periods 2ω and 2ω′ and a double pole at z = 0. CWPLD(Z) computes the
derivative of ℘(z | ω, ω′) with 2ω = 1 and 2ω′ = i. CWPL, page 154, computes ℘
(z | ω, ω′).

The input argument is first reduced to the fundamental parallelogram of all z
satisfying −1/2 ≤ ℜz ≤ 1/2 and −1/2 ≤ ℑz ≤ 1/2. Then, a rational approximation is
used.

All arguments are valid with the exception of the lattice points z = m + ni, which
are the poles of CWPL. If the argument is a lattice point, then b = AMACH(2), the
largest floating-point number, is returned.

Function CWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, ℘(0.25 + 0.25i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CWPLD, VALUE, Z
 EXTERNAL CWPLD, UMACH
C Compute
 Z = (0.25, 0.25)
 VALUE = CWPLD(Z)

156 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CWPLD(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CWPLD(0.250, 0.250) = (36.054,36.054)

CWPQ/ZWPQ (Single/Double precision)
Evaluate the Weierstrass’ ℘ function in the equianharmonic case for complex
argument with unit period parallelogram.

Usage
CWPQ(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CWPQ — Complex function value. (Output)

Algorithm

The Weierstrass’ ℘ function, ℘(z) = ℘(z | ω, ω′), is an elliptic function of order
two with periods 2ω and 2ω′ and a double pole at z = 0. CWPQ(Z) computes ℘(z |
ω, ω′) with

4 1 3 4 1 3ω ω= − ′ = +i i and

The input argument is first reduced to the fundamental parallelogram of all z
satisfying

− ≤ ℜ ≤ − ≤ ℑ ≤1 2 1 2 3 4 3 4/ / / /z z and

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

z m i n i= − + +1 3 1 32 7 2 7
which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2),
the largest floating-point number, is returned. If the argument has modulus greater

than 10ε-1, then NaN (not a number) is returned. Here,
ε = AMACH(4) is the machine precision.

Function CWPQ is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 157

Example

In this example, ℘(0.25 + 0.14437567 i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CWPQ, VALUE, Z
 EXTERNAL CWPQ, UMACH
C Compute
 Z = (0.25, 0.14437567)
 VALUE = CWPQ(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CWPQ(’, F6.3, ’,’, F6.3, ’) = (’,
 & F7.3, ’,’, F7.3, ’)’)
 END

Output
CWPQ(0.250, 0.144) = (5.895,-10.216)

CWPQD/ZWPQD (Single/Double precision)
Evaluate the first derivative of the Weierstrass’ ℘ function in the equianharmonic
case for complex argument with unit period parallelogram.

Usage
CWPQD(Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CWPQD — Complex function value. (Output)

Algorithm

The Weierstrass’ ℘ function, ℘(z) = ℘(z | ω, ω′), is an elliptic function of order
two with periods 2ω and 2ω′ and a double pole at z = 0. CWPQD(Z) computes the
derivative of ℘(z | ω, ω′) with

4 1 3 4 1 3ω ω= − ′ = +i i and

CWPQ, page 156, computes ℘(z | ω, ω′).

The input argument is first reduced to the fundamental parallelogram of all z
satisfying

− ≤ ℜ ≤ − ≤ ℑ ≤1 2 1 2 3 4 3 4/ / / /z z and

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points

158 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

z m i n i= − + +1 3 1 32 7 2 7
which are the poles of CWPQ. If the argument is a lattice point, then b = AMACH(2),
the largest floating-point number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, ℘(0.25 + 0.14437567 i) is computed and printed.

C Declare variables
 INTEGER NOUT
 COMPLEX CWPQD, VALUE, Z
 EXTERNAL CWPQD, UMACH
C Compute
 Z = (0.25, 0.14437567)
 VALUE = CWPQD(Z)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, VALUE
99999 FORMAT (’ CWPQD(’, F6.3, ’,’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CWPQD(0.250, 0.144) = (0.028,85.934)

EJSN/DEJSN (Single/Double precision)
Evaluate the Jacobi elliptic function sn(x, m).

Usage
EJSN(X, AM)

Arguments

X — Argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2). (Input)

EJSN — Function value. (Output)

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because |X|

is too large.

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 159

 3 5 Landen transform did not converge. Result may not be accurate.
This should never occur.

Algorithm

The Jacobi elliptic function sn(x, m) = sin φ, where the amplitude φ is defined by
the following:

x
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function sn(x, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, sn(1.5, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM, EJSN, VALUE, X
 EXTERNAL EJSN, UMACH
C Compute
 AM = 0.5
 X = 1.5
 VALUE = EJSN(X, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (’ EJSN(’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
EJSN(1.500, 0.500) = 0.968

CEJSN/ZEJSN (Single/Double precision)
Evaluate the complex Jacobi elliptic function sn(z, m).

Usage
CEJSN(Z, AM)

Arguments

Z — Complex argument for which the function value is desired. (Input)

AM — Real parameter of the elliptic function (m = k2). (Input)

CEJSN — Complex function value. (Output)

160 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because

|REAL (Z)| is too large.
 3 3 The result is accurate to less than one half precision because

|AIMAG (Z)| is too large.
 3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

Algorithm

The Jacobi elliptic function sn(z, m) = sin φ, where the amplitude φ is defined by
the following:

z
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function sn(z, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, sn(1.5 + 0.3i, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX CEJSN, VALUE, Z
 EXTERNAL CEJSN, UMACH
C Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = CEJSN(Z, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (’ CEJSN((’, F6.3, ’,’, F6.3, ’), ’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CEJSN((1.500, 0.300), 0.500) = (0.993, 0.054)

EJCN/DEJCN (Single/Double precision)
Evaluate the Jacobi elliptic function cn(x, m).

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 161

Usage
EJCN(X, AM)

Arguments

X — Argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2). (Input)

EJCN — Function value. (Output)

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because |X|

is too large.
 3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

Algorithm

The Jacobi elliptic function cn(x, m) = cos φ, where the amplitude φ is defined by
the following:

x
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function cn(x, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, cn(1.5, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM, EJCN, VALUE, X
 EXTERNAL EJCN, UMACH
C Compute
 AM = 0.5
 X = 1.5
 VALUE = EJCN(X, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (’ EJCN(’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

162 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

Output
EJCN(1.500, 0.500) = 0.250

CEJCN/ZEJCN (Single/Double precision)
Evaluate the complex Jacobi elliptic integral cn(z, m).

Usage
CEJCN(Z, AM)

Arguments

Z — Complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic integral (m = k2). (Input)

CEJCN — Complex function value. (Output)

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because

|REAL (Z)| is too large.
 3 3 The result is accurate to less than one half precision because

|AIMAG (Z)| is too large.
 3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

Algorithm

The Jacobi elliptic function cn(z, m) = cos φ, where the amplitude φ is defined by
the following:

z
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function cn(z, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, cn(1.5 + 0.3i, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX CEJCN, VALUE, Z

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 163

 EXTERNAL CEJCN, UMACH
C Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = CEJCN(Z, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (’ CEJCN((’, F6.3, ’,’, F6.3, ’), ’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CEJCN((1.500, 0.300), 0.500) = (0.251,-0.212)

EJDN/DEJDN (Single/Double precision)
Evaluate the Jacobi elliptic function dn(x, m).

Usage
EJDN(X, AM)

Arguments

X — Argument for which the function value is desired. (Input)

AM — Parameter of the elliptic function (m = k2). (Input)

EJDN — Function value. (Output)

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because |X|

is too large.
 3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

Algorithm

The Jacobi elliptic function dn(x, m) = (1 − m sin2 φ)1/2, where the amplitude φ is
defined by the following:

x
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function dn(x, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a

164 • Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions

descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, dn(1.5, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM, EJDN, VALUE, X
 EXTERNAL EJDN, UMACH
C Compute
 AM = 0.5
 X = 1.5
 VALUE = EJDN(X, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, AM, VALUE
99999 FORMAT (’ EJDN(’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

Output
EJDN(1.500, 0.500) = 0.729

CEJDN/ZEJDN (Single/Double precision)
Evaluate the complex Jacobi elliptic integral dn(z, m).

Usage
CEJDN(Z, AM)

Arguments

Z — Complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic integral (m = k2). (Input)

CEJDN — Complex function value. (Output)

Comments

Informational errors
Type Code
 3 2 The result is accurate to less than one half precision because

|REAL (Z)| is too large.
 3 3 The result is accurate to less than one half precision because

|AIMAG (Z)| is too large.
 3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

IMSL MATH/LIBRARY Special Functions Chapter 10: Elliptic and Related Functions • 165

Algorithm

The Jacobi elliptic function dn(z, m) = (1 − m sin2 φ)1/2), where the amplitude φ is
defined by the following:

z
d

m
=

−
I θ

θ

φ

1
1

20
sin23 8

The function dn(z, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, dn(1.5 + 0.3i, 0.5) is computed and printed.
C Declare variables
 INTEGER NOUT
 REAL AM
 COMPLEX CEJDN, VALUE, Z
 EXTERNAL CEJDN, UMACH
C Compute
 Z = (1.5, 0.3)
 AM = 0.5
 VALUE = CEJDN(Z, AM)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) Z, AM, VALUE
99999 FORMAT (’ CEJDN((’, F6.3, ’,’, F6.3, ’), ’, F6.3, ’) = (’,
 & F6.3, ’,’, F6.3, ’)’)
 END

Output
CEJDN((1.500, 0.300), 0.500) = (0.714,-0.037)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 167

Chapter 11: Probability Distribution
Functions and Inverses

Routines
11.1. Discrete Random Variables: Distribution Functions and Probability

Functions
Binomial distribution function .. BINDF 172
Binomial probability ...BINPR 173
Hypergeometric distribution function....................................HYPDF 175
Hypergeometric probability ..HYPPR 177
Poisson distribution function ...POIDF 178
Poisson probability ..POIPR 180

11.2. Continuous Random Variables: Distribution Functions and Their
Inverses
Kolmogorov-Smirnov one-sided statistic
distribution function ..AKS1DF 181
Kolmogorov-Smirnov two-sided statistic
distribution function ..AKS2DF 184
Normal (Gaussian) distribution function............................ANORDF 186
Inverse of the normal distribution functionANORIN 188
Beta distribution function.. BETDF 189
Inverse of the beta distribution function BETIN 191
Bivariate normal distribution function BNRDF 192
Chi-squared distribution function ..CHIDF 193
Inverse of the chi-squared distribution function CHIIN 196
Noncentral chi-squared distribution function....................... CSNDF 197
F distribution function..FDF 200
Inverse of the F distribution function .. FIN 201
Gamma distribution function ...GAMDF 203
Student’s t distribution function ...TDF 205
Inverse of the Student’s t distribution function TIN 207
Noncentral Student’s t distribution function............................ TNDF 208

168 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

11.3. General Continuous Random Variables
Distribution function given ordinates of density GCDF 210
Inverse of distribution function given ordinates of density...... GCIN 212

Usage Notes
Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the routines in
this chapter are written for standard forms of statistical distributions. Hence, the
number of parameters for any given distribution may be fewer than the number
often associated with the distribution. For example, while a gamma distribution is
often characterized by two parameters (or even a third, “location”), there is only
one parameter that is necessary, the “shape.” The “scale” parameter can be used
to scale the variable to the standard gamma distribution. For another example, the
functions relating to the normal distribution, ANORDF (page 186) and ANORIN
(page 188), are for a normal distribution with mean equal to zero and variance
equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root
of the variance.

The distribution function for the (real, single-valued) random variable X is the
function F defined for all real x by

F(x) = Prob(X ≤ x)

where Prob(⋅) denotes the probability of an event. The distribution function is
often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The routines in this chapter return the correct values for the distribution functions
when values outside of the range of the random variable are input, but warning
error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is

F x p k
A

0 5 0 5= ∑

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 169

where A is the set such that k ≤ x. The “DF” routines in this chapter evaluate
cumulative distributions functions. Since the distribution function is a step
function, its inverse does not exist uniquely.

Figure 11-1 Discrete Random Variable

In the plot above, a routine like BINPR (page 173) in this chapter evaluates the
individual probability, given X. A routine like BINDF (page 172) would evaluate
the sum of the probabilities up to and including the probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is the probability density function (PDF). The integral of the
PDF is the probability over the interval; if the continuous random variable X has
PDF f, then

Prob a X b f x dx
a

b
< ≤ = I0 5 0 5

The relationship between the CDF and the PDF is

F x f t dt
x0 5 0 5=
−∞I

as shown below.

170 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Figure 11-2 Probability Density Function

The “DF” routines for continuous distributions in this chapter evaluate cumulative
distribution functions, just as the ones for discrete distributions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x
within the support of the distribution. The “IN” routines in this chapter compute
the inverses of the distribution functions; that is, given F(x) (called “P” for
“probability”), a routine like BETIN (page 191) computes x. The inverses are
defined only over the open interval (0, 1).

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 171

Figure 11-3 Cumulative Probability Distribution Function

There are two routines in this chapter that deal with general continuous
distribution functions. The routine GCDF (page 210) computes a distribution
function using values of the density function, and the routine GCIN (page 212)
computes the inverse. These two routines may be useful when the user has an
estimate of a probability density.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function
or is to be input to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(as the normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using ANORIN (page 188) directly, the result
to six places is 0.999968. Only two of those digits are really useful, however. A
more useful result may be 1.000000 minus this value, which can be obtained to
six significant figures as 3.16713E−05 by evaluating ANORIN at
−4.0. For the normal distribution, the two values are related by Φ(x) = 1 − Φ(−x),
where Φ(⋅) is the normal distribution function. Another example is the beta
distribution with parameters 2 and 10. This distribution is skewed to the right; so

172 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

evaluating BETDF at 0.7, we obtain 0.999953. A more precise result is obtained
by evaluating BETDF with parameters 10 and 2 at 0.3. This yields 4.72392E−5.
(In both of these examples, it is wise not to trust the last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The algorithms make use of various expansions
and recursive relationships, and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments; however, if
the input to one of the distribution functions in this chapter is outside the range of
the random variable, an error of Type 1 is issued, and the output is set to zero or
one, as appropriate. A Type 1 error is of lowest severity, a “note;” and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert,” for a function value
being set to zero due to underflow; Type 3, “warning,” for considerable loss of
accuracy in the result returned; and Type 5, “terminal,” for incorrect and/ or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code, obtained by IMSL
routine AMACH(6) (page 240)). (See the section “User Errors” in the Reference
Material.)

BINDF/DBINDF (Single/Double precision)
Evaluate the binomial distribution function.

Usage
BINDF(K, N, P)

Arguments

K — Argument for which the binomial distribution function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINDF — Function value, the probability that a binomial random variable takes
a value less than or equal to K. (Output)
BINDF is the probability that K or fewer successes occur in N independent
Bernoulli trials, each of which has a P probability of success.

Comments

Informational errors
Type Code
 1 3 The input argument, K, is less than zero.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 173

 1 4 The input argument, K, is greater than the number of Bernoulli
trials, N.

Algorithm

Function BINDF evaluates the distribution function of a binomial random variable
with parameters n and p. It does this by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship

Pr PrX j
n j p

j p
X j= =

+ −
−

= −0 5 0 5
0 5 0 51

1
1

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value

for summing the probabilities, which are rescaled by (1 − p)Qε if forward

computation is performed and by pQε if backward computation is done.

For the special case of p = 0, BINDF is set to 1; and for the case p = 1, BINDF is
set to 1 if k = n and to 0 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is less than or equal to 3.

 INTEGER K, N, NOUT
 REAL BINDF, P, PR
 EXTERNAL BINDF, UMACH
C
 CALL UMACH (2, NOUT)
 K = 3
 N = 5
 P = 0.95
 PR = BINDF(K,N,P)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is less than or equal to 3 is ’
 & , F6.4)
 END

Output
The probability that X is less than or equal to 3 is 0.0226

BINPR/DBINPR (Single/Double precision)
Evaluate the binomial probability function.

Usage
BINPR(K, N, P)

174 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Arguments

K — Argument for which the binomial probability function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINPR — Function value, the probability that a binomial random variable takes
a value equal to K. (Output)

Comments

Informational errors
Type Code
 1 3 The input argument, K, is less than zero.
 1 4 The input argument, K, is greater than the number of Bernoulli

trials, N.

Algorithm

The function BINPR evaluates the probability that a binomial random variable
with parameters n and p takes on the value k. It does this by computing
probabilities of the random variable taking on the values in its range less than (or
the values greater than) k. These probabilities are computed by the recursive
relationship

Pr PrX j
n j p

j p
X j= =

+ −
−

= −0 5 0 5
0 5 0 51

1
1

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value

for computing the probabilities, which are rescaled by (1 − p)Qε if forward

computation is performed and by pQε if backward computation is done.

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1
otherwise; and for the case p = 1, BINPR is set to 0 if k is less than n and to 1
otherwise.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 175

Figure 11-4 Binomial Probability Function

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

 INTEGER K, N, NOUT
 REAL BINPR, P, PR
 EXTERNAL BINPR, UMACH
C
 CALL UMACH (2, NOUT)
 K = 3
 N = 5
 P = 0.95
 PR = BINPR(K,N,P)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 3 is ’, F6.4)
 END

Output
The probability that X is equal to 3 is 0.0214

HYPDF/DHYPDF (Single/Double precision)
Evaluate the hypergeometric distribution function.

176 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Usage
HYPDF(K, N, M, L)

Arguments

K — Argument for which the hypergeometric distribution function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

HYPDF — Function value, the probability that a hypergeometric random
variable takes a value less than or equal to K. (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size N

drawn from a lot of size L that contains M defectives.

Comments

Informational errors
Type Code
 1 5 The input argument, K, is less than zero.
 1 6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPDF evaluates the distribution function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random
variable X can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

Pr , , , , min ,X j j i i i n m

m

j

l m

n j
l

n

= = = + +
�
��

�
��

−
−

�
��

�
��

�
��

�
��

0 5 0 5for 1 2 K

where i = max(0, n − l + m).

If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums
the terms in this expression for j going from i up to k. Otherwise, HYPDF returns 0
or 1, as appropriate. So, as to avoid rounding in the accumulation, HYPDF

performs the summation differently depending on whether or not k is greater than
the mode of the distribution, which is the greatest integer in (m + 1)(n + 1)/(l + 2).

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 177

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, we evaluate the distribution function at 7.

 INTEGER K, L, M, N, NOUT
 REAL DF, HYPDF
 EXTERNAL HYPDF, UMACH
C
 CALL UMACH (2, NOUT)
 K = 7
 N = 100
 L = 1000
 M = 70
 DF = HYPDF(K,N,M,L)
 WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to 7 is ’
 & , F6.4)
 END

Output
The probability that X is less than or equal to 7 is 0.5995

HYPPR/DHYPPR (Single/Double precision)
Evaluate the hypergeometric probability function.

Usage
HYPPR(K, N, M, L)

Arguments

K — Argument for which the hypergeometric probability function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equal to N and M.

HYPPR — Function value, the probability that a hypergeometric random variable
takes a value equal to K. (Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N

drawn from a lot of size L that contains M defectives.

Comments

Informational errors
Type Code
 1 5 The input argument, K, is less than zero.

178 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 1 6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPPR evaluates the probability function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random
variable X can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

Pr , , , min ,X k k i i i n m

m

k

l m

n k
l

n

= = = + +
�
��

�
��

−
−

�
��

�
��

�
��

�
��

0 5 0 5for 1 2 K

where i = max(0, n − l + m).

HYPPR evaluates the expression using log gamma functions.

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m =
70. In this example, we evaluate the probability function at 7.

 INTEGER K, L, M, N, NOUT
 REAL HYPPR, PR
 EXTERNAL HYPPR, UMACH
C
 CALL UMACH (2, NOUT)
 K = 7
 N = 100
 L = 1000
 M = 70
 PR = HYPPR(K,N,M,L)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
 END

Output
The probability that X is equal to 7 is 0.1628

POIDF/DPOIDF (Single/Double precision)
Evaluate the Poisson distribution function.

Usage
POIDF(K, THETA)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 179

Arguments

K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIDF — Function value, the probability that a Poisson random variable takes a
value less than or equal to K. (Output)

Comments

Informational error
Type Code
 1 1 The input argument, K, is less than zero.

Algorithm

The function POIDF evaluates the distribution function of a Poisson random
variable with parameter THETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (with θ = THETA) is

f(x) = e-q θ[/x!, for x = 0, 1, 2, …

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. POIDF uses the recursive relationship

f(x + 1) = f(x)θ/(x + 1), for x = 0, 1, 2, …, k − 1

with f(0) = e-q.

Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate
the distribution function at 7.

 INTEGER K, NOUT
 REAL DF, POIDF, THETA
 EXTERNAL POIDF, UMACH
C
 CALL UMACH (2, NOUT)
 K = 7
 THETA = 10.0
 DF = POIDF(K,THETA)
 WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to ’,
 & ’7 is ’, F6.4)
 END

Output
The probability that X is less than or equal to 7 is 0.2202

180 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

POIPR/DPOIPR (Single/Double precision)
Evaluate the Poisson probability function.

Usage
POIPR(K, THETA)

Arguments

K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIPR — Function value, the probability that a Poisson random variable takes a
value equal to K. (Output)

Comments

Informational error
Type Code
 1 1 The input argument, K, is less than zero.

Algorithm

The function POIPR evaluates the probability function of a Poisson random
variable with parameter THETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (with θ = THETA) is

f(k) = e-qθN/k!, for k = 0, 1, 2, …

POIPR evaluates this function directly, taking logarithms and using the log
gamma function.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 181

Figure 11-5 Poisson Probability Function

Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate
the probability function at 7.

 INTEGER K, NOUT
 REAL POIPR, PR, THETA
 EXTERNAL POIPR, UMACH
C
 CALL UMACH (2, NOUT)
 K = 7
 THETA = 10.0
 PR = POIPR(K,THETA)
 WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
 END

Output
The probability that X is equal to 7 is 0.0901

AKS1DF/DKS1DF (Single/Double precision)
Evaluate the distribution function of the one-sided Kolmogorov-Smirnov

goodness of fit D+ or D- test statistic based on continuous data for one sample.

182 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Usage
AKS1DF(NOBS, D)

Arguments

NOBS — The total number of observations in the sample. (Input)

D — The D+ or D- test statistic. (Input)
D is the maximum positive difference of the empirical cumulative distribution
function (CDF) minus the hypothetical CDF or the maximum positive difference
of the hypothetical CDF minus the empirical CDF.

AKS1DF — The probability of a smaller D. (Output)

Comments

1. Automatic workspace usage is

AKS1DF 3 * (NOBS + 1) units, or
DKS1DF 6 * (NOBS + 1) units.

Workspace may be explicitly provided, if desired, by use of
AK21DF/DK21DF. The reference is
AK2DF(NOBS, D, WK)

The additional argument is

WK — Work vector of length 3 * NOBS + 3 if NOBS ≤ 80. WK is not used
if NOBS is greater than 80.

2. Informational errors
Type Code
 1 2 Since the D test statistic is less than zero, the

distribution function is zero at D.
 1 3 Since the D test statistic is greater than one, the

distribution function is one at D.

3. If NOBS ≤ 80, then exact one-sided probabilities are computed. In this

case, on the order of NOBS2 operations are required. For NOBS > 80,
approximate one-sided probabilities are computed. These approximate
probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D+, D-) statistic
can be computed as twice the AKS1DF probability for D (minus one, if
the probability from AKS1DF is greater than 0.5).

Algorithm

Routine AKS1DF computes the cumulative distribution function (CDF) for the

one-sided Kolmogorov-Smirnov one-sample D+ or D- statistic when the
theoretical CDF is strictly continuous. Exact probabilities are computed

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 183

according to a method given by Conover (1980, page 350) for sample sizes of 80
or less. For sample sizes greater than 80, the asympotic methods discussed by
Conover are used.

Let F(x) denote the theoretical distribution function, and let SQ(x) denote the

empirical distribution function obtained from a sample of size NOBS. Then, the D+
statistic is computed as

D F x S x
x

n
+ = −sup 0 5 0 5

while the one-sided D- statistic is computed as

D S x F x
x

n
− = −sup 0 5 0 5

Programming Notes

Routine AKS1DF requires on the order of NOBS2 operations to compute the exact
probabilities, where an operation consists of taking ten or so logarithms. Because
so much computation is occurring within each “operation,” AKS1DF is much
slower than its two-sample counterpart, IMSL function AKS2DF (page 184).

Example

In this example, the exact one-sided probabilities for the tabled values of D+ or D
−, given, for example, in Conover (1980, page 462), are computed. Tabled values
at the 10% level of significance are used as input to AKS1DF for sample sizes of 5
to 50 in increments of 5. The last two tabled values are obtained using the
asymptotic critical values of

1 07. / NOBS

The resulting probabilities should all be close to 0.90.
 INTEGER I, NOBS, NOUT
 REAL AKS1DF, D(10)
 EXTERNAL AKS1DF, UMACH
C
 DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165,
 & 0.160, 0.151/
C
 CALL UMACH (2, NOUT)
C
 DO 10 I=1, 10
 NOBS = 5*I
C
 WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I))
C
99999 FORMAT (’ One-sided Probability for D = ’, F8.3, ’ with NOBS ’
 & , ’= ’, I2, ’ is ’, F8.4)
 10 CONTINUE
 END

184 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Output
One-sided Probability for D = 0.447 with NOBS = 5 is 0.9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0.9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0.9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0.9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0.9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0.8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0.9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0.8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0.9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0.9077

AKS2DF/DKS2DF (Single/Double precision)
Evaluate the distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Usage
AKS2DF(NOBSX, NOBSY, D)

Arguments

NOBSX — The total number of observations in the first sample. (Input)

NOBSY — The total number of observations in the second sample. (Input)

D — The D test statistic. (Input)
D is the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

AKS2DF — The probability of a smaller D. (Output)

Comments

1. Automatic workspace usage is

AKS2DF max(NOBSX, NOBSY) + 1 units, or
DKS2DF 2 * max(NOBSX, NOBSY) + 1 units.

Workspace may be explicitly provided, if desired, by use of
AK22DF/DK22DF. The reference is
AK22DF(NOBSX, NOBSY, D, WK)

The additional argument is

WK — Work vector of length max(NOBSX, NOBSY) + 1.

2. Informational errors
Type Code
 1 2 Since the D test statistic is less than zero, then the

distribution function is zero at D.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 185

 1 3 Since the D test statistic is greater than one, then the
distribution function is one at D.

Algorithm

Function AKS2DF computes the cumulative distribution function (CDF) for the
two-sided Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF
is strictly continuous. Exact probabilities are computed according to a method
given by Kim and Jennrich (1973). Approximate asymptotic probabilities are
computed according to methods also given in this reference.

Let FQ(x) and GP(x) denote the empirical distribution functions for the two
samples, based on n = NOBSX and m = NOBSY observations. Then, the D statistic
is computed as

D F x G x
x

n m= −sup 0 5 0 5

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute
the exact probabilities, where an operation consists of an addition and a
multiplication. For NOBSX * NOBSY less than 10000, the exact probability is
computed. If this is not the case, then the Smirnov approximation discussed by
Kim and Jennrich is used if the minimum of NOBSX and NOBSY is greater than ten
percent of the maximum of NOBSX and NOBSY, or if the minimum is greater than
80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich is
used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a
variety of sample sizes using values close to the 0.95 probability value.

 INTEGER I, NOBSX(10), NOBSY(10), NOUT
 REAL AKS2DF, D(10)
 EXTERNAL AKS2DF, UMACH
C
 DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
 DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
 DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796,
 & 0.18, 0.18/
C
 CALL UMACH (2, NOUT)
C
 DO 10 I=1, 10
C
 WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I),
 & AKS2DF(NOBSX(I),NOBSY(I),D(I))
C
99999 FORMAT (’ Probability for D = ’, F5.3, ’ with NOBSX = ’, I3,
 & ’ and NOBSY = ’, I3, ’ is ’, F9.6, ’.’)
 10 CONTINUE

186 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 END

Output
Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.
Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

ANORDF/DNORDF (Single/Double precision)
Evaluate the standard normal (Gaussian) distribution function.

Usage
ANORDF(X)

Arguments

X — Argument for which the normal distribution function is to be evaluated.
(Input)

ANORDF — Function value, the probability that a normal random variable takes
a value less than or equal to X. (Output)

Algorithm

Function ANORDF evaluates the distribution function, Φ, of a standard normal
(Gaussian) random variable, that is,

Φ x e dttx0 5 = −
−∞I1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

The standard normal distribution (for which ANORDF is the distribution function)
has mean of 0 and variance of 1. The probability that a normal random variable

with mean µ and variance σ2 is less than y is given by ANORDF evaluated at (y − µ
)/σ.

Φ(x) is evaluated by use of the complementary error function, erfc. (See ERFC,
page 71) The relationship is:

Φ x x0 5 2 7= −erfc / . /2 0 2

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 187

Figure 11-6 Standard Normal Distribution Function

Example

Suppose X is a normal random variable with mean 100 and variance 225. In this
example, we find the probability that X is less than 90, and the probability that X
is between 105 and 110.

 INTEGER NOUT
 REAL ANORDF, P, X1, X2
 EXTERNAL ANORDF, UMACH
C
 CALL UMACH (2, NOUT)
 X1 = (90.0-100.0)/15.0
 P = ANORDF(X1)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 90 is ’, F6.4)
 X1 = (105.0-100.0)/15.0
 X2 = (110.0-100.0)/15.0
 P = ANORDF(X2) - ANORDF(X1)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 105 and 110 is ’,
 & F6.4)
 END

Output
The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

188 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

ANORIN/DNORIN (Single/Double precision)
Evaluate the inverse of the standard normal (Gaussian) distribution function.

Usage
ANORIN(P)

Arguments

P — Probability for which the inverse of the normal distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

ANORIN — Function value. (Output)
The probability that a standard normal random variable takes a value less than or
equal to ANORIN is P.

Algorithm

Function ANORIN evaluates the inverse of the distribution function, Φ, of a

standard normal (Gaussian) random variable, that is, ANORIN(P) = Φ-1(p), where

Φ x e dttx0 5 = −
−∞I1

2

2 2

π
/

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

References used to design this routine include Hart et al. (1968), Kinnucan and
Kuki (1968), and Strecok (1968).

Example

In this example, we compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to this point.

 INTEGER NOUT
 REAL ANORIN, P, X
 EXTERNAL ANORIN, UMACH
C
 CALL UMACH (2, NOUT)
 P = 0.9
 X = ANORIN(P)
 WRITE (NOUT,99999) X
99999 FORMAT (’ The 90th percentile of a standard normal is ’, F6.4)
 END

Output
The 90th percentile of a standard normal is 1.2816

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 189

BETDF/DBETDF (Single/Double precision)
Evaluate the beta probability distribution function.

Usage
BETDF(X, PIN, QIN)

Arguments

X — Argument for which the beta distribution function is to be evaluated.
(Input)

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

BETDF — Probability that a random variable from a beta distribution having
parameters PIN and QIN will be less than or equal to X. (Output)

Comments

Informational errors
Type Code
 1 1 Since the input argument X is less than or equal to zero, the

distribution function is equal to zero at X.
 1 2 Since the input argument X is greater than or equal to one, the

distribution function is equal to one at X.

Algorithm

Function BETDF evaluates the distribution function of a beta random variable with
parameters PIN and QIN. This function is sometimes called the incomplete beta
ratio and, with p = PIN and q = QIN, is denoted by I[(p, q). It is given by

I p q
p q

p q
t t dtx

p qx
,0 5 0 5 0 5

0 5 0 5=
+

−− −IΓ Γ
Γ

1 1

0
1

where Γ(⋅) is the gamma function. The value of the distribution function I[(p, q) is
the probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is
denoted by β[(p, q). The constant in the expression is the reciprocal of the beta

function (the incomplete function evaluated at one) and is denoted by β(p, q).

Function BETDF uses the method of Bosten and Battiste (1974b).

190 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Figure 11-7 Beta Distribution Function

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a
symmetric distribution.) In this example, we find the probability that X is less than
0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it is less than 0.5 is 0.5.)

 INTEGER NOUT
 REAL BETDF, P, PIN, QIN, X
 EXTERNAL BETDF, UMACH
C
 CALL UMACH (2, NOUT)
 PIN = 12.0
 QIN = 12.0
 X = 0.6
 P = BETDF(X,PIN,QIN)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
 X = 0.5
 P = P - BETDF(X,PIN,QIN)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 0.6 is ’,
 & F6.4)
 END

Output
The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 191

BETIN/DBETIN (Single/Double precision)
Evaluate the inverse of the beta distribution function.

Usage
BETIN(P, PIN, QIN)

Arguments

P — Probability for which the inverse of the beta distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PIN must be positive.

QIN — Second beta distribution parameter. (Input)
QIN must be positive.

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to
BETIN is P.

Comments

Informational error
Type Code
 3 1 The value for the inverse Beta distribution could not be found

in 100 iterations. The best approximation is used.

Algorithm

The function BETIN evaluates the inverse distribution function of a beta random
variable with parameters PIN and QIN, that is, with P = P, p = PIN, and q = QIN;
it determines x (= BETIN(P, PIN, QIN)), such that

P =
Γ Γ
Γ

p q

p q
t t dtp qx0 5 0 5

0 5 0 5
+

−− −I 1 1

0
1

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P.

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a
symmetric distribution.) In this example, we find the value x0 such that the
probability that X ≤ x0 is 0.9.

 INTEGER NOUT
 REAL BETIN, P, PIN, QIN, X

192 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 EXTERNAL BETIN, UMACH
C
 CALL UMACH (2, NOUT)
 PIN = 12.0
 QIN = 12.0
 P = 0.9
 X = BETIN(P,PIN,QIN)
 WRITE (NOUT,99999) X
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
 END

Output
X is less than 0.6299 with probability 0.9.

BNRDF/DBNRDF (Single/Double precision)
Evaluate the bivariate normal distribution function.

Usage
BNRDF(X, Y, RHO)

Arguments

X — One argument for which the bivariate normal distribution function is to be
evaluated. (Input)

Y — The other argument for which the bivariate normal distribution function is to
be evaluated. (Input)

RHO — Correlation coefficient. (Input)

BNRDF — Function value, the probability that a bivariate normal random
variable with correlation RHO takes a value less than or equal to X and less than or
equal to Y. (Output)

Algorithm

Function BNRDF evaluates the distribution function F of a bivariate normal
distribution with means of zero, variances of one, and correlation of RHO, that is,
with ρ = RHO, and |ρ| < 1,

F x y
u uv v

du dv
yx

, exp0 5
3 8

=
−

− − +
−

�
�
��

�
�
��−∞−∞ II1

2 1

2

2 12

2 2

2π ρ

ρ
ρ

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)7 is a bivariate

normal random variable with mean µ = (µ8, µ9)7 and variance-covariance matrix

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 193

Σ =
�
��

�
��

σ σ
σ σ

U UV

UV V

2

2

transform (U, V)7 to a vector with zero means and unit variances. The input to
BNRDF would be X = (u0 − µ8)/σ8, Y = (v0 − µ9) = σ9, and ρ = σ89/(σ8σ9).

Function BNRDF uses the method of Owen (1962, 1965). For |ρ| = 1, the
distribution function is computed based on the univariate statistic, Z = min(x, y),
and on the normal distribution function ANORDF (page 186).

See Cooper (1968) for more information on the algorithm used.

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and
variance-covariance matrix

1 0 0 9

0 9 1 0

. .

. .
�
��

�
��

In this example, we find the probability that X is less than −2.0 and Y is less than
0.0.

 INTEGER NOUT
 REAL BNRDF, P, RHO, X, Y
 EXTERNAL BNRDF, UMACH
C
 CALL UMACH (2, NOUT)
 X = -2.0
 Y = 0.0
 RHO = 0.9
 P = BNRDF(X,Y,RHO)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than -2.0 and Y ’,
 & ’is less than 0.0 is ’, F6.4)
 END

Output
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

CHIDF/DCHIDF (Single/Double precision)
Evaluate the chi-squared distribution function.

Usage
CHIDF(CHSQ, DF)

194 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Arguments

CHSQ — Argument for which the chi-squared distribution function is to be
evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIDF — Function value, the probability that a chi-squared random variable
takes a value less than or equal to CHSQ. (Output)

Comments

Informational errors
Type Code
 1 1 Since the input argument, CHSQ, is less than zero, the

distribution function is zero at CHSQ.
 2 3 The normal distribution is used for large degrees of freedom.

However, it has produced underflow. Therefore, the
probability, CHIDF, is set to zero.

Algorithm

Function CHIDF evaluates the distribution function, F, of a chi-squared random
variable with DF degrees of freedom, that is, with ν = DF, and x = CHSQ,

F x e t dtt vx0 5 0 5= − −I1

2 22
2 2 1

0ν ν/
/ /

/Γ

where Γ(⋅) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

For ν > 65, CHIDF uses the Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) to the normal distribution, and routine ANORDF

(page 186) is used to evaluate the normal distribution function.

For ν ≤ 65, CHIDF uses series expansions to evaluate the distribution function. If
x < max (ν/2, 26), CHIDF uses the series 6.5.29 in Abramowitz and Stegun
(1964); otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and
Stegun.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 195

Figure 11-8 Chi-Squared Distribution Function

Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that X
is greater than 3.0.

 INTEGER NOUT
 REAL CHIDF, CHSQ, DF, P
 EXTERNAL CHIDF, UMACH
C
 CALL UMACH (2, NOUT)
 DF = 2.0
 CHSQ = 0.15
 P = CHIDF(CHSQ,DF)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that chi-squared with 2 df is less ’,
 & ’than 0.15 is ’, F6.4)
 CHSQ = 3.0
 P = 1.0 - CHIDF(CHSQ,DF)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that chi-squared with 2 df is greater ’,
 & ’than 3.0 is ’, F6.4)
 END

Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

196 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

CHIIN/DCHIIN (Single/Double precision)
Evaluate the inverse of the chi-squared distribution function.

Usage
CHIIN(P, DF)

Arguments

P — Probability for which the inverse of the chi-squared distribution function is
to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or
equal to CHIIN is P.

Comments

Informational errors
Type Code
 4 1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

Function CHIIN evaluates the inverse distribution function of a chi-squared
random variable with DF degrees of freedom; that is, with P = P and ν = DF, it
determines x (= CHIIN(P, DF)), such that

P e t dtt vx
= − −I1

2 22
2 2 1

0ν ν/
/ /

/Γ0 5
where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P.

For ν < 40, CHIIN uses bisection (if ν ≤ 2 or P > 0.98) or regula falsi to find the
point at which the chi-squared distribution function is equal to P. The distribution
function is evaluated using routine CHIDF (page 193).

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.18) to the normal distribution is used, and routine
ANORIN (page 188) is used to evaluate the inverse of the normal distribution
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, equation 26.4.17) is used.

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 197

Example

In this example, we find the 99-th percentage points of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

 INTEGER NOUT
 REAL CHIIN, DF, P, X
 EXTERNAL CHIIN, UMACH
C
 CALL UMACH (2, NOUT)
 P = 0.99
 DF = 2.0
 X = CHIIN(P,DF)
 WRITE (NOUT,99998) X
99998 FORMAT (’ The 99-th percentage point of chi-squared with 2 df ’
 & , ’is ’, F7.3)
 DF = 64.0
 X = CHIIN(P,DF)
 WRITE (NOUT,99999) X
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’
 & , ’is ’, F7.3)
 END

Output
The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

CSNDF/DCSNDF (Single/Double precision)
Evaluate the noncentral chi-squared distribution function.

Usage
CSNDF(CHSQ, DF, ALAM)

Arguments

CHSQ — Argument for which the noncentral chi-squared distribution function is
to be evaluated. (Input)

DF — Number of degrees of freedom of the noncentral chi-squared distribution.
(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

CSNDF — Function value, the probability that a noncentral chi-squared random
variable takes a value less than or equal to CHSQ. (Output)

198 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Comments

1. Informational errors
Type Code
 1 1 Since the input argument, CHSQ, is less than or equal

to zero, the distribution function is zero at CHSQ.
 3 2 Convergence was not obtained. The best

approximation to the probability is returned.

2. This subroutine sums terms of an infinite series of central chi-squared
distribution functions weighted by Poisson terms. Summing terminates
when either the current term is less than 10 * AMACH(4) times the current
sum or when 1000 terms have been accumulated. In the latter case, a
warning error is issued.

Algorithm

Function CSNDF evaluates the distribution function of a noncentral chi-squared
random variable with DF degrees of freedom and noncentrality parameter ALAM;
that is, with ν = DF, λ = ALAM, and x = CHSQ,

CSNDF x
e

i

t e
dt

i

i

i t

i i

x0 5 0 5
2 7

0
0=

−

=
∞

+) − −

+) +∑ Iλ ν

ν ν

λ/ / /

/

/

!

2

0

2 2 1 2

2 2 2
2

0

2

2 Γ

where Γ(⋅) is the gamma function. This is a series of central chi-squared
distribution functions with Poisson weights. The value of the distribution function
at the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If YL have independent normal

distributions with means µL and variances equal to one and

X Yii

n= =∑ 2
1

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

µ ii

n 2
1=∑

With a noncentrality parameter of zero, the noncentral chi-squared distribution is
the same as the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and
then sums forward and backward from that point, terminating when the additional
terms are sufficiently small or when a maximum of 1000 terms have been
accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 199

(1964) is used to speed the evaluation of the central chi-squared distribution
functions.

Figure 11-9 Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable
that follows the noncentral chi-squared distribution with noncentrality parameter
of 1 and with 2 degrees of freedom is less than or equal to 8.642.

 INTEGER NOUT
 REAL ALAM, CHSQ, CSNDF, DF, P
 EXTERNAL CSNDF, UMACH
C
 CALL UMACH (2, NOUT)
 DF = 2.0
 ALAM = 1.0
 CHSQ = 8.642
 P = CSNDF(CHSQ,DF,ALAM)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a noncentral chi-squared random’,
 & /, ’ variable with 2 df and noncentrality 1.0 is less’,
 & /, ’ than 8.642 is ’, F5.3)
 END

200 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

FDF/DFDF (Single/Double precision)
Evaluate the F distribution function.

Usage
FDF(F, DFN, DFD)

Arguments

F — Argument for which the F distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FDF — Function value, the probability that an F random variable takes a value
less than or equal to the input F. (Output)

Comments

Informational error
Type Code
 1 3 Since the input argument F is not positive, the distribution

function is zero at F.

Algorithm

Function FDF evaluates the distribution function of a Snedecor’s F random
variable with DFN numerator degrees of freedom and DFD denominator degrees of
freedom. The function is evaluated by making a transformation to a beta random
variable and then using the routine BETDF (page 189). If X is an F variate with ν1
and ν2 degrees of freedom and Y = ν1X/(ν2 + ν1X), then Y is a beta variate with
parameters p = ν1/2 and q = ν2/2. The function FDF also uses a relationship
between F random variables that can be expressed as follows:
FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 201

Figure 11-10 F Distribution Function

Example

In this example, we find the probability that an F random variable with one
numerator and one denominator degree of freedom is greater than 648.

 INTEGER NOUT
 REAL DFD, DFN, F, FDF, P
 EXTERNAL FDF, UMACH
C
 CALL UMACH (2, NOUT)
 F = 648.0
 DFN = 1.0
 DFD = 1.0
 P = 1.0 - FDF(F,DFN,DFD)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that an F(1,1) variate is greater ’,
 & ’than 648 is ’, F6.4)
 END

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250

FIN/DFIN (Single/Double precision)
Evaluate the inverse of the F distribution function.

202 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Usage
FIN(P, DFN, DFD)

Arguments

P — Probability for which the inverse of the F distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FIN — Function value. (Output)
The probability that an F random variable takes a value less than or equal to
FIN is P.

Comments

Informational error
Type Code
 4 4 FIN is set to machine infinity since overflow would occur upon

modifying the inverse value for the F distribution with the
result obtained from the inverse BETA distribution.

Algorithm

Function FIN evaluates the inverse distribution function of a Snedecor’s F
random variable with DFN numerator degrees of freedom and DFD denominator
degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using the routine BETIN (page 191). If X is an F
variate with ν1 and ν2 degrees of freedom and Y = ν1X/(ν2 + ν1X), then Y is a beta
variate with parameters p = ν1/2 and q = ν2/2. If P ≤ 0.5, FIN uses this
relationship directly; otherwise, it also uses a relationship between F random
variables that can be expressed as follows, using routine FDF (page 200), which is
the F cumulative distribution function:
FDF(F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN)

Example

In this example, we find the 99-th percentage point for an F random variable with
1 and 7 degrees of freedom.

 INTEGER NOUT
 REAL DFD, DFN, F, FIN, P
 EXTERNAL FIN, UMACH
C
 CALL UMACH (2, NOUT)
 P = 0.99

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 203

 DFN = 1.0
 DFD = 7.0
 F = FIN(P,DFN,DFD)
 WRITE (NOUT,99999) F
99999 FORMAT (’ The F(1,7) 0.01 critical value is ’, F6.3)
 END

Output
The F(1,7) 0.01 critical value is 12.246

GAMDF/DGAMDF (Single/Double precision)
Evaluate the gamma distribution function.

Usage
GAMDF(X, A)

Arguments

X — Argument for which the gamma distribution function is to be evaluated.
(Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

GAMDF — Function value, the probability that a gamma random variable takes a
value less than or equal to X. (Output)

Comments

Informational error
Type Code
 1 2 Since the input argument X is less than zero, the distribution

function is set to zero.

Algorithm

Function GAMDF evaluates the distribution function, F , of a gamma random
variable with shape parameter a; that is,

F x
a

e t dtt ax0 5 0 5= − −I1 1

0Γ

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to
∞ of the same integrand as above). The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive), or even as a three-parameter

204 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

distribution in which the third parameter c is a location parameter. In the most
general case, the probability density function over (c, ∞) is

f t
b a

e x ca
t c b a0 5 0 5 0 50= −− −) −1 1

Γ
/

If T is such a random variable with parameters a, b, and c, the probability that T ≤
t0 can be obtained from GAMDF by setting X = (t0 − c)/b.

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz
and Stegun, 1964.)

Figure 11-11 Gamma Distribution Function

Example

Suppose X is a gamma random variable with a shape parameter of 4. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) In this
example, we find the probability that X is less than 0.5 and the probability that X
is between 0.5 and 1.0.

 INTEGER NOUT
 REAL A, GAMDF, P, X
 EXTERNAL GAMDF, UMACH
C
 CALL UMACH (2, NOUT)
 A = 4.0

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 205

 X = 0.5
 P = GAMDF(X,A)
 WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.5 is ’, F6.4)
 X = 1.0
 P = GAMDF(X,A) - P
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 1.0 is ’,
 & F6.4)
 END

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

TDF/DTDF (Single/Double precision)
Evaluate the Student’s t distribution function.

Usage
TDF(T, DF)

Arguments

T — Argument for which the Student’s t distribution function is to be evaluated.
(Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TDF — Function value, the probability that a Student’s t random variable takes a
value less than or equal to the input T. (Output)

Algorithm

Function TDF evaluates the distribution function of a Student’s t random variable
with DF degrees of freedom. If the square of T is greater than or equal to DF, the
relationship of a t to an F random variable (and subsequently, to a beta random
variable) is exploited; and routine BETDF (page 189) is used. Otherwise, the
method described by Hill (1970) is used. If DF is not an integer, if DF is greater
than 19, or if DF is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function. If DF is less than 20 and ABS(T) is less than 2.0,
a trigonometric series (see Abramowitz and Stegun, 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series given
by Hill (1970) that converges well for large values of T is used.

206 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

Figure 11-12 Student’s t Distribution Function

Example

In this example, we find the probability that a t random variable with 6 degrees of
freedom is greater in absolute value than 2.447. We use the fact that t is
symmetric about 0.

 INTEGER NOUT
 REAL DF, P, T, TDF
 EXTERNAL TDF, UMACH
C
 CALL UMACH (2, NOUT)
 T = 2.447
 DF = 6.0
 P = 2.0*TDF(-T,DF)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a t(6) variate is greater ’,
 & ’than 2.447 in’, /, ’ absolute value is ’, F6.4)
 END

Output
The probability that a t(6) variate is greater than 2.447 in
absolute value is 0.0500

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 207

TIN/DTIN (Single/Double precision)
Evaluate the inverse of the Student’s t distribution function.

Usage
TIN(P, DF)

Arguments

P — Probability for which the inverse of the Student’s t distribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TIN — Function value. (Output)
The probability that a Student’s t random variable takes a value less than or equal
to TIN is P.

Comments

Informational error
Type Code
 4 3 TIN is set to machine infinity since overflow would occur upon

modifying the inverse value for the F distribution with the
result obtained from the inverse β distribution.

Algorithm

Function TIN evaluates the inverse distribution function of a Student’s t random
variable with DF degrees of freedom. Let ν = DF. If ν equals 1 or 2, the inverse
can be obtained in closed form; if ν is between 1 and 2, the relationship of a t to a
beta random variable is exploited and routine BETIN (page 191) is used to
evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small
values of ν greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1

+ t2/ν) of the t density. For larger values, an asymptotic inverse Cornish-Fisher
type expansion about normal deviates is used.

Example

In this example, we find the 0.05 critical value for a two-sided t test with 6
degrees of freedom.

 INTEGER NOUT
 REAL DF, P, T, TIN
 EXTERNAL TIN, UMACH
C
 CALL UMACH (2, NOUT)
 P = 0.975

208 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 DF = 6.0
 T = TIN(P,DF)
 WRITE (NOUT,99999) T
99999 FORMAT (’ The two-sided t(6) 0.05 critical value is ’, F6.3)
 END

Output
The two-sided t(6) 0.05 critical value is 2.447

TNDF/DTNDF (Single/Double precision)
Evaluate the noncentral Student’s t distribution function.

Usage
TNDF(T, IDF, DELTA)

Arguments

T — Argument for which the noncentral Student’s t distribution function is to be
evaluated. (Input)

IDF — Number of degrees of freedom of the noncentral Student’s t distribution.
(Input)
IDF must be positive.

DELTA — The noncentrality parameter. (Input)

TNDF — Function value, the probability that a noncentral Student’s t random
variable takes a value less than or equal to T. (Output)

Algorithm

Function TNDF evaluates the distribution function F of a noncentral t random
variable with IDF degrees of freedom and noncentrality parameter DELTA; that is,
with ν = IDF, δ = DELTA , and t0 = T,

F t
e

x

i
i

x

x
dx

t

i i

i

0

2 2

2 1 2

2

2

2

0

2

0

2

1 2
2

1 6
0 53 8

0 51 6

0=
+

+ +
�
��

�
�� +
�
��

�
��

−

+)−∞

=
∞

I

∑

ν

π ν ν

ν δ
ν

ν δ

ν

/ /

/

/

/

/
!

Γ

Γ

where Γ(⋅) is the gamma function. The value of the distribution function at the
point t0 is the probability that the random variable takes a value less than or equal
to t0.

The noncentral t random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 209

variable and an independent chi-squared random variable. If w has a normal
distribution with mean δ and variance equal to one, u has an independent chi-
squared distribution with ν degrees of freedom, and

x w
u

=
/ ν

then x has a noncentral t distribution with ν degrees of freedom and noncentrality
parameter δ.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen, 1962,
page 108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.

Figure 11-13 Noncentral Student’s t Distribution Function

Example

Suppose T is a noncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that T is less
than 12.0. (This can be checked using the table on page 111 of Owen, 1962, with
η = 0.866, which yields λ = 1.664.)

 INTEGER IDF, NOUT
 REAL DELTA, P, T, TNDF

210 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

 EXTERNAL TNDF, UMACH
C
 CALL UMACH (2, NOUT)
 IDF = 6
 DELTA = 6.0
 T = 12.0
 P = TNDF(T,IDF,DELTA)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that T is less than 12.0 is ’, F6.4)
 END

Output
The probability that T is less than 12.0 is 0.9501

GCDF/DGCDF (Single/Double precision)
Evaluate a general continuous cumulative distribution function given ordinates of
the density.

Usage
GCDF(X0, IOPT, M, X, F)

Arguments

X0 — Point at which the distribution function is to be evaluated. (Input)

IOPT — Indicator of the method of interpolation. (Input)

IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than
3 if a curve is fitted through the ordinates (IOPT = 3 or 4).

X — Array containing the abscissas or the endpoints. (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1
or 3, X(1) contains the lower endpoint of the support of the distribution and X(2)
is the upper endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order,
the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates
corresponding to increasing abscissas. (Input)
If IOPT = 1 or 3; for I = 1, 2, …, M, F(I) corresponds to X(1) + (I − 1) * (X(2) −
X(1))/(M − 1); otherwise, F and X correspond one for one.

GCDF — Function value, the probability that a random variable whose density is
given in F takes a value less than or equal to X0. (Output)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 211

Comments

If IOPT = 3, automatic workspace usage is

GCDF 6 * M units, or
DGCDF 11 * M units.

If IOPT = 4, automatic workspace usage is

GCDF 5 * M units, or
DGCDF 9 * M units.

Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF. The
reference is
G4DF(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCDF are

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Algorithm

Function GCDF evaluates a continuous distribution function, given ordinates of the
probability density function. It requires that the range of the distribution be
specified in X. For distributions with infinite ranges, endpoints must be chosen so
that most of the probability content is included. The function GCDF first fits a
curve to the points given in X and F with either a piecewise linear interpolant or a

C1 cubic spline interpolant based on a method by Akima (1970). Function GCDF

then determines the area, A, under the curve. (If the distribution were of finite
range and if the fit were exact, this area would be 1.0.) Using the same fitted
curve, GCDF next determines the area up to the point x0 (= X0). The value
returned is the area up to x0 divided by A. Because of the scaling by A, it is not
assumed that the integral of the density defined by X and F is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained when IOPT equals 3 or 4, that is, when a cubic spline is
used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The
probability density function of a beta random variable with parameters p and q is

f x
p q

p q
x x xp q0 5 0 5

0 5 0 5 0 5=
+

− ≤ ≤− −Γ
Γ Γ

1 11 0 1for

212 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

where Γ(⋅) is the gamma function. The density is equal to 0 outside the interval
[0, 1]. We compute a constant multiple (we can ignore the constant gamma
functions) of the density at 300 equally spaced points and input this information
in X and F. Knowing that the probability density of this distribution is very
peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally
spaced abscissas, but we will keep it simple. Note that this is the same example as
one used in the description of routine BETDF (page 189). The result from BETDF
would be expected to be more accurate than that from GCDF since BETDF is
designed specifically for this distribution.

 INTEGER M
 PARAMETER (M=300)
C
 INTEGER I, IOPT, NOUT
 REAL F(M), GCDF, H, P, PIN1, QIN1, X(2), X0, XI
 EXTERNAL GCDF, UMACH
C
 CALL UMACH (2, NOUT)
 X0 = 0.6
 IOPT = 3
C Initializations for a beta(12,12)
C distribution.
 PIN1 = 11.0
 QIN1 = 11.0
 XI = 0.0
 H = 1.0/(M-1.0)
 X(1) = XI
 F(1) = 0.0
 XI = XI + H
C Compute ordinates of the probability
C density function.
 DO 10 I=2, M - 1
 F(I) = XI**PIN1*(1.0-XI)**QIN1
 XI = XI + H
 10 CONTINUE
 X(2) = 1.0
 F(M) = 0.0
 P = GCDF(X0,IOPT,M,X,F)
 WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
 END

Output
The probability that X is less than 0.6 is 0.8364

GCIN/DGCIN (Single/Double precision)
Evaluate the inverse of a general continuous cumulative distribution function
given ordinates of the density.

Usage
GCIN(P, IOPT, M, X, F)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 213

Arguments

P — Probability for which the inverse of the distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

IOPT — Indicator of the method of interpolation. (Input)

IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than
3 if a curve is fitted through the ordinates (IOPT = 3 or 4).

X — Array containing the abscissas or the endpoints. (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1
or 3, X(1) contains the lower endpoint of the support of the distribution and X(2)
is the upper endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order,
the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates
corresponding to increasing abscissas. (Input)
If IOPT = 1 or 3, for I = 1, 2, …, M, F(I) corresponds to X(1) + (I − 1) * (X(2) −
X(1))/(M − 1); otherwise, F and X correspond one for one.

GCIN — Function value. (Output)
The probability that a random variable whose density is given in F takes a value
less than or equal to GCIN is P.

Comments

If IOPT = 3, automatic workspace usage is

GCIN 6 * M units, or
DGCIN 11 * M units.

If IOPT = 4, automatic workspace usage is

GCIN 5 * M units, or
DGCIN 9 * M units.

Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The
reference is
G3IN(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCIN are

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

214 • Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions

IWK — Work vector of length M.

Algorithm

Function GCIN evaluates the inverse of a continuous distribution function, given
ordinates of the probability density function. The range of the distribution must
be specified in X. For distributions with infinite ranges, endpoints must be chosen
so that most of the probability content is included.

The function GCIN first fits a curve to the points given in X and F with either a

piecewise linear interpolant or a C1 cubic spline interpolant based on a method by
Akima (1970). Function GCIN then determines the area, A, under the curve. (If
the distribution were of finite range and if the fit were exact, this area would be
1.0.) It next finds the maximum abscissa up to which the area is less than AP and
the minimum abscissa up to which the area is greater than AP. The routine then
interpolates for the point corresponding to AP. Because of the scaling by A, it is
not assumed that the integral of the density defined by X and F is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained when IOPT equals 3 or 4, that is, when a cubic spline is
used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we find the 90-th percentage point for a beta random variable
with parameters 12 and 12. The probability density function of a beta random
variable with parameters p and q is

f x
p q

p q
x x xp q0 5 0 5

0 5 0 5 0 5=
+

− ≤ ≤− −Γ
Γ Γ

1 11 0 1for

where Γ(⋅) is the gamma function. The density is equal to 0 outside the interval
[0, 1]. With p = q, this is a symmetric distribution. Knowing that the probability
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps
get a better fit by using unequally spaced abscissas, but we will keep it simple and
use 300 equally spaced points. Note that this is the same example that is used in
the description of routine BETIN (page 191). The result from BETIN would be
expected to be more accurate than that from GCIN since BETIN is designed
specifically for this distribution.

 INTEGER M
 PARAMETER (M=300)
C
 INTEGER I, IOPT, NOUT
 REAL BETA, C, F(M), GCIN, H, P, PIN, PIN1, QIN, QIN1,
 & X(2), X0, XI
 EXTERNAL BETA, GCIN, UMACH
C
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Special Functions Chapter 11: Probability Distribution Functions and Inverses • 215

 P = 0.9
 IOPT = 3
C Initializations for a beta(12,12)
C distribution.
 PIN = 12.0
 QIN = 12.0
 PIN1 = PIN - 1.0
 QIN1 = QIN - 1.0
 C = 1.0/BETA(PIN,QIN)
 XI = 0.0
 H = 1.0/(M-1.0)
 X(1) = XI
 F(1) = 0.0
 XI = XI + H
C Compute ordinates of the probability
C density function.
 DO 10 I=2, M - 1
 F(I) = C*XI**PIN1*(1.0-XI)**QIN1
 XI = XI + H
 10 CONTINUE
 X(2) = 1.0
 F(M) = 0.0
 X0 = GCIN(P,IOPT,M,X,F)
 WRITE (NOUT,99999) X0
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
 END

Output
X is less than 0.6304 with probability 0.9.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions • 217

Chapter 12: Mathieu Functions

Routines
Evaluate the eigenvalues
for the periodic Mathieu functions MATEE 217
Evaluate even, periodic Mathieu functions.......................... MATCE 220
Evaluate odd, periodic Mathieu functions MATSE 223

Usage Notes
Mathieu’s equation is

d y

dv
a q v y

2

2 2 2 0+ − =cos0 5
It arises from the solution, by separation of variables, of Laplace’s equation in
elliptical coordinates, where a is the separation constant and q is related to the
ellipticity of the coordinate system. If we let t = cos v, then Mathieu’s equation
can be written as

1 2 4 02
2

2
2− − + + − =t

d y

dt
t

dy

dt
a q qt y3 8 3 8

For various physically important problems, the solution y(t) must be periodic.
There exist, for particular values of a, periodic solutions to Mathieu’s equation of
period kπ for any integer k. These particular values of a are called eigenvalues or
characteristic values. They are computed using the routine MATEE (page 217).

There exist sequences of both even and odd periodic solutions to Mathieu’s
equation. The even solutions are computed by MATCE (page 220). The odd
solutions are computed by MATSE (page 223).

MATEE/DMATEE (Single/Double precision)
Evaluate the eigenvalues for the periodic Mathieu functions.

218 • Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Usage
CALL MATEE (Q, N, ISYM, IPER, EVAL)

Arguments

Q — Parameter. (Input)

N — Number of eigenvalues to be computed. (Input)

ISYM — Symmetry indicator. (Input)

ISYM Meaning
0 Even
1 Odd

IPER — Periodicity indicator. (Input)

ISYM Period
0 pi
1 2 * pi

EVAL — Vector of length N containing the eigenvalues. (Output)

Comments

1. Automatic workspace usage is

MATEE 2 * N units, or
DMATEE 4 * N units.

Workspace may be explicitly provided, if desired, by use of
M2TEE/DM2TEE. The reference is
CALL M2TEE (Q, N, ISYM, IPER, EVAL, NORDER, WORKD,
 WORKE)

The additional arguments are as follows:

NORDER — Order of the matrix whose eigenvalues are computed.
(Input)

WORKD — Work vector of size NORDER. (Input/Output)
If EVAL is large enough then EVAL and WORKD can be the same vector.

WORKE — Work vector of size NORDER. (Input/Output)

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues did not converge.

Algorithm

The eigenvalues of Mathieu’s equation are computed by a method due to Hodge
(1972). The desired eigenvalues are the same as the eigenvalues of the following
symmetric, tridiagonal matrix:

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions • 219

W qX

qX W qX

qX W qX

qX W

0 0

0 2 2

2 4 4

4 6

0 0

0

0

0 0

K

K

K

K

M M M M M

�

!

"

$

######
Here,

X
m

W m V

m

m m

=
%&'

= = =

= + + − +

2

1

0

2 1
2

if ISYM

otherwise
IPER

IPER IPER ISYM0 5
where

V

q

q

m

mm =
+
−

%
&K
'K

= = =
= = =

0

1 0 0

1 1 0

if IPER and

if IPER and

otherwise

,

,

ISYM

ISYM

Since the above matrix is semi-infinite, it must be truncated before its eigenvalues
can be computed. Routine MATEE computes an estimate of the number of terms
needed to get accurate results. This estimate can be overridden by calling M2TEE
with NORDER equal to the desired order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the
IMSL MATH/LIBRARY Chapter 2.

Example

In this example, the eigenvalues for q = 5, even symmetry, and π periodicity are
computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER ISYM, IPER, K, NOUT
 REAL Q, EVAL(N)
 EXTERNAL CONST, MATEE, UMACH
C Compute
 Q = 5.0
 ISYM = 0
 IPER = 0
 CALL MATEE (Q, N, ISYM, IPER, EVAL)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) 2*K-2, EVAL(K)
 10 CONTINUE
99999 FORMAT (’ Eigenvalue’, I2, ’ = ’, F9.4)
 END

220 • Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Output
Eigenvalue 0 = -5.8000
Eigenvalue 2 = 7.4491
Eigenvalue 4 = 17.0966
Eigenvalue 6 = 36.3609
Eigenvalue 8 = 64.1989
Eigenvalue10 = 100.1264
Eigenvalue12 = 144.0874
Eigenvalue14 = 196.0641
Eigenvalue16 = 256.0491
Eigenvalue18 = 324.0386

MATCE/DMATCE (Single/Double precision)
Evaluate a sequence of even, periodic, integer order, real Mathieu functions.

Usage
CALL MATCE (X, Q, N, CE)

Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated.
(Input)

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of length N containing the values of the function through the series.
(Output)
CE(I) contains the value of the Mathieu function of order I − 1 at X for I = 1 to
N.

Comments

1. Automatic workspace usage is

MATCE 6 * NORDER + 6 units, or
DMATCE 12 * NORDER + 12 units.

Workspace may be explicitly provided, if desired, by use of
M2TCE/DM2TCE. The reference is
CALL M2TCE (X, Q, N, CE, NORDER, NEEDEV, EVAL0,
 EVAL1, COEF, WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues.
(Input)
It must be greater than N. Routine MATSE computes NORDER by the
following call to M3TEE.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions • 221

CALL M3TEE(Q, N, NORDER)

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be
computed. (Input)

EVAL0 — Real work vector of length NORDER containing the
eigenvalues computed by MATEE with ISYM = 0 and IPER = 0.
(Input/Output)
If NEEDEV is .TRUE., then EVAL0 is computed by M2TCE; otherwise, it
must be set as an input value.

EVAL1 — Real work vector of length NORDER containing the
eigenvalues computed by MATEE with ISYM = 0 and IPER = 1.
(Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TCE; otherwise, it
must be set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSJ — Real work vector of length 2 * NORDER − 2.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues did not converge.

Algorithm

The eigenvalues of Mathieu’s equation are computed using MATEE (page 217).
The function values are then computed using a sum of Bessel functions, see
Gradshteyn and Ryzhik (1965), equation 8.661.

Example 1

In this example, ceQ(x = π/4, q = 1), n = 0, …, 9 is computed and printed.

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL CE(N), CONST, Q, X
 EXTERNAL CONST, MATCE, UMACH
C Compute
 Q = 1.0
 X = 0.25*CONST(’PI’)
 CALL MATCE (X, Q, N, CE)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, Q, CE(K)
 10 CONTINUE
99999 FORMAT (’ ce sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3)
 END

222 • Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Output
ce sub 0 (0.785, 1.000) = 0.654
ce sub 1 (0.785, 1.000) = 0.794
ce sub 2 (0.785, 1.000) = 0.299
ce sub 3 (0.785, 1.000) = -0.555
ce sub 4 (0.785, 1.000) = -0.989
ce sub 5 (0.785, 1.000) = -0.776
ce sub 6 (0.785, 1.000) = -0.086
ce sub 7 (0.785, 1.000) = 0.654
ce sub 8 (0.785, 1.000) = 0.998
ce sub 9 (0.785, 1.000) = 0.746

Example 2

In this example, we compute ceQ(x, q) for various values of n and x and a fixed
value of q. To avoid having to recompute the eigenvalues, which depend on q but
not on x, we compute the eigenvalues once and pass in their value to M2TCE. The
eigenvalues are computed using MATEE (page 217). The routine M3TEE is used to
compute NORDER based on Q and N. The arrays BSJ, COEF and WORK are used as
temporary storage in M2TCE.

C Declare variables
 INTEGER MAXORD, N, NX
 PARAMETER (MAXORD=100, N=4, NX=5)
C
 INTEGER ISYM, K, NORDER, NOUT
 REAL BSJ(2*MAXORD-2), CE(N), CONST, COEF(MAXORD+4)
 REAL EVAL0(MAXORD), EVAL1(MAXORD), PI, Q, WORK(MAXORD+4), X
 EXTERNAL CONST, MATEE, M2TCE, UMACH
C Compute NORDER
 Q = 1.0
 CALL M3TEE (Q, N, NORDER)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT, 99997) NORDER
C Compute eigenvalues
 ISYM = 0
 CALL MATEE (Q, NORDER, ISYM, 0, EVAL0)
 CALL MATEE (Q, NORDER, ISYM, 1, EVAL1)
C
 PI = CONST(’PI’)
C Compute function values
 WRITE (NOUT, 99998)
 DO 10 K=0, NX
 X = (K*PI)/NX
 CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVAL0, EVAL1,
 & COEF, WORK, BSJ)
 WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4)
 10 CONTINUE
C
99997 FORMAT (’ NORDER = ’, I3)
99998 FORMAT (/, 28X, ’Order’, /, 20X, ’0’, 7X, ’1’, 7X,
 & ’2’, 7X, ’3’)
99999 FORMAT (’ ce(’, F6.3, ’) = ’, 4F8.3)
 END

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions • 223

Output
NORDER = 23
 Order
 0 1 2 3
ce(0.000) = 0.385 0.856 1.086 1.067
ce(0.628) = 0.564 0.838 0.574 -0.131
ce(1.257) = 0.926 0.425 -0.575 -0.820
ce(1.885) = 0.926 -0.425 -0.575 0.820
ce(2.513) = 0.564 -0.838 0.574 0.131
ce(3.142) = 0.385 -0.856 1.086 -1.067

Figure 12-1 Plot of ceQ(x, q = 1)

MATSE/DMATSE (Single/Double precision)
Evaluate a sequence of odd, periodic, integer order, real Mathieu functions.

Usage
CALL MATSE (X, Q, N, SE)

Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated.
(Input)

224 • Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

Q — Parameter. (Input)
The parameter Q must be positive.

N — Number of elements in the sequence. (Input)

SE — Vector of length N containing the values of the function through the
series. (Output)
SE(I) contains the value of the Mathieu function of order I at X for I = 1 to N.

Comments

1. Automatic workspace usage is

MATSE 6 * NORDER + 9 units, or
DMATSE 12 * NORDER + 18 units.

Workspace may be explicitly provided, if desired, by use of
M2TSE/DM2TSE. The reference is
CALL M2TSE (X, Q, N, SE, NORDER, NEEDEV, EVAL0,
 EVAL1, COEF, WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues.
(Input)
It must be greater than N. Routine MATSE computes NORDER by the
following call to M3TEE.

CALL M3TEE (Q, N, NORDER)

NEEDEV — Logical variable, if .TRUE., the eigenvalues must be
computed. (Input)

EVAL0 — Real work vector of length NORDER containing the
eigenvalues computed by MATEE with ISYM = 1 and IPER = 0.
(Input/Output)
If NEEDEV is .TRUE., then EVAL0 is computed by M2TSE; otherwise, it
must be set as an input value.

EVAL1 — Real work vector of length NORDER containing the
eigenvalues computed by MATEE with ISYM = 1 and IPER = 1.
(Input/Output)
If NEEDEV is .TRUE., then EVAL1 is computed by M2TSE; otherwise, it
must be set as an input value.

COEF — Real work vector of length NORDER + 4.

WORK — Real work vector of length NORDER + 4.

BSI — Real work vector of length 2 * NORDER + 1.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues did not converge.

IMSL MATH/LIBRARY Special Functions Chapter 12: Mathieu Functions • 225

Algorithm

The eigenvalues of Mathieu’s equation are computed using MATEE (page 217).
The function values are then computed using a sum of Bessel functions, see
Gradshteyn and Ryzhik (1965), equation 8.661.

Example

In this example, seQ(x = π/4, q = 10), n = 0, …, 9 is computed and printed.

Figure 12-2 Plot of seQ(x, q = 1)

C Declare variables
 INTEGER N
 PARAMETER (N=10)
C
 INTEGER K, NOUT
 REAL SE(N), CONST, Q, X
 EXTERNAL CONST, MATSE, UMACH
C Compute
 Q = 10.0
 X = 0.25*CONST(’PI’)
 CALL MATSE (X, Q, N, SE)
C Print the results
 CALL UMACH (2, NOUT)
 DO 10 K=1, N
 WRITE (NOUT,99999) K-1, X, Q, SE(K)
 10 CONTINUE
99999 FORMAT (’ se sub’, I2, ’ (’, F6.3, ’,’, F6.3, ’) = ’, F6.3)

226 • Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions

 END

Output
se sub 0 (0.785,10.000) = 0.250
se sub 1 (0.785,10.000) = 0.692
se sub 2 (0.785,10.000) = 1.082
se sub 3 (0.785,10.000) = 0.960
se sub 4 (0.785,10.000) = 0.230
se sub 5 (0.785,10.000) = -0.634
se sub 6 (0.785,10.000) = -0.981
se sub 7 (0.785,10.000) = -0.588
se sub 8 (0.785,10.000) = 0.219
se sub 9 (0.785,10.000) = 0.871

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions • 227

Chapter 13: Miscellaneous
Functions

Routines
Spence dilogarithm ..SPENC 229
Initialize a Chebyshev series...INITS 230
Evaluate a Chebyshev series... CSEVL 231

Usage Notes
Many functions of one variable can be numerically computed using a Chebyshev
series,

f x A T x xnn n0 5 0 5= − ≤ ≤=
∞∑ 0

1 1

A Chebyshev series is better for numerical computation than a Taylor series since

the Chebyshev polynomials, TQ(x), are better behaved than the monomials, xQ.

A Taylor series can be converted into a Chebyshev series using an algorithm of
Fields and Wimp, (see Luke (1969), page 292).

Let

f x xnn
n0 5 = =

∞∑ ξ
0

be a Taylor series expansion valid for |x| < 1. Define

A
n n

n kn n
k k n k

k
k

=
+ +

+
+

=
∞∑2

4

1

2 1

1
2

0

2 7 0 5
0 5

ξ

!

where (a)N = Γ(a + k)/Γ(a) is Pochhammer’s symbol.

228 • Chapter 13: Miscellaneous Functions IMSL MATH/LIBRARY Special Functions

(Note that (a)N + 1 = (a + k)(a)N). Then,

f x T x A T x xn nn
0 5 0 5 0 5= + ≤ ≤=

∞∑1
2 0 1

0 1* *

where

T xn
* 0 5

are the shifted Chebyshev polynomials,

T x T xn n
* *0 5 0 5= −2 1

In an actual implementation of this algorithm, the number of terms in the Taylor
series and the number of terms in the Chebyshev series must both be finite. If the
Taylor series is an alternating series, then the error in using only the first M terms
is less than |ξ0�+�1 |. The error in truncating the Chebyshev series to N terms is no
more than

cnn N= +
∞∑ 1

If the Taylor series is valid on |x| < R, then we can write

f x R x Rn
n n

n
0 5 0 5= =

∞∑ ξ /
0

and use ξQRQ instead of ξQ in the algorithm to obtain a Chebyshev series in x/R
valid for 0 < x < R. Unfortunately, if R is large, then the Chebyshev series
converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at c.
Let t = x − c, so

f x f t c t c
n

j
c t

t x c

n
n

n nj

n

n
n j j

n
n

n n
n

n

0 5 0 5 0 5

0 5

= + = + = �
��

�
��

= = −

=
∞

==
∞ −

=
∞

=
∞

∑ ∑∑

∑ ∑

ξ ξ

ξ ξ

0 00

0 0
$ $

By interchanging the order of the double sum, it can easily be shown that

$ξ ξj n j
n j

n
n

j
c= �

��
�
��=

∞ −∑
By combining scaling and shifting, we can obtain a Chebyshev series valid over
any interval [a, b] for which the original Taylor series converges.

The algorithm can also be applied to asymptotic series,

f x x xn
n

n
0 5 ~ ξ −

=
∞∑ → ∞

0
 as

by treating the series truncated to M terms as a polynomial in 1/x. The
asymptotic series is usually divergent; but if it is alternating, the error in

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions • 229

truncating the series to M terms is less than |ξ0�+�1|/R0�+�1 for R ≤ x < ∞.
Normally, as M increases, the error initially decreases to a small value and then
increases without a bound. Therefore, there is a limit to the accuracy that can be
obtained by increasing M. More accuracy can be obtained by increasing R. The
optimal value of M depends on both the sequence ξM and R. For R fixed, the

optimal value of M can be found by finding the value of M at which |ξ0|/R0
starts to increase.

Since we want a routine accurate to near machine precision, the algorithm must
be implemented using somewhat higher precision than is normally used. This is
best done using a symbolic computation package.

SPENC/DSPENC (Single/Double precision)
Evaluate a form of Spence’s integral.

Usage
SPENC(X)

Arguments

X — Argument for which the function value is desired. (Input)

SPENC — Function value. (Output)

Algorithm

The Spence dilogarithm function, s(x), is defined to be

s x
y

y
dy

x0 5 = −
−I ln1

0

For |x| ≤ 1, the uniformly convergent expansion

s x
x

k

k

k
0 5 = =

∞∑ 21

is valid.

Spence’s function can be used to evaluate much more general integral forms. For
example,

c
ax b

cx d
dx

a cz d

ad bc
s

a cz d

ad bc

z log
log

+
+

=
+

−
−

+
−

�
��

�
��I 0 5 0 5 0 5

0

Example

In this example, s(0.2) is computed and printed.

230 • Chapter 13: Miscellaneous Functions IMSL MATH/LIBRARY Special Functions

C Declare variables
 INTEGER NOUT
 REAL SPENC, VALUE, X
 EXTERNAL SPENC, UMACH
C Compute
 X = 0.2
 VALUE = SPENC(X)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, VALUE
99999 FORMAT (’ SPENC(’, F6.3, ’) = ’, F6.3)
 END

Output
SPENC(0.200) = 0.211

INITS/INITDS (Single/Double precision)
Initialize the orthogonal series so the function value is the number of terms
needed to insure the error is no larger than the requested accuracy.

Usage
INITS(OS, NOS, ETA)

Arguments

OS — Vector of length NOS containing coefficients in an orthogonal series.
(Input)

NOS — Number of coefficients in OS. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual convention, ETA is a REAL argument to INITDS.

INITS — Number of terms needed to insure the error is no larger than ETA.
(Output)

Comments

ETA will usually be chosen to be one tenth of machine precision.

Algorithm

Function INITS initializes a Chebyshev series. The function INITS returns the
number of terms in the series s of length n needed to insure that the error of the
evaluated series is everywhere less than ETA. The number of input terms n must
be greater than 1, so that a series of at least one term and an error estimate can be
obtained. In addition, ETA should be larger than the absolute value of the last
coefficient. If it is not, then all the terms of the series must be used, and no error
estimate is available.

IMSL MATH/LIBRARY Special Functions Chapter 13: Miscellaneous Functions • 231

CSEVL/DCSEVL (Single/Double precision)
Evaluate the N-term Chebyshev series.

Usage
CSEVL(X, CS, N)

Arguments

X — Argument at which the series is to be evaluated. (Input)

CS — Vector of length N containing the terms of a Chebyshev series. (Input)
In evaluating CS, only half of the first coefficient is summed.

N — Number of terms in the vector CS. (Input)

CSEVL — Function value. (Output)

Comments

Informational error
Type Code
 3 7 X is outside the interval (−1.1, +1.1)

Algorithm

Function CSEVL evaluates a Chebyshev series whose coefficients are stored in the
array s of length n at the point x. The argument x must lie in the interval
[−1, +1]. Other finite intervals can be linearly transformed to this canonical
interval. Also, the number of terms in the series must be greater than zero but less
than 1000. This latter limit is purely arbitrary; it is imposed in order to guard
against the possibility of a floating point number being passed as an argument for
n.

IMSL MATH/LIBRARY Special Functions Reference Material • 233

Reference Material

User Errors.. 233
Automatic Workspace Allocation .. 237
Machine-Dependent Constants .. 239
Reserved Names .. 243
Deprecated and Deleted Routines...................................... 244

User Errors
IMSL routines attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. To do this, we recognize
various levels of severity of errors, and we also consider the extent of the error in
the context of the purpose of the routine; a trivial error in one situation may be
serious in another. IMSL routines attempt to report as many errors as they can
reasonably detect. Multiple errors present a difficult problem in error detection
because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the routine computes several
output quantities, if some are not computable but most are, an error condition
exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N = −1 when “N” is the
number of equations, the routine prints a message giving the value of the
erroneous input argument(s) and the reason for the erroneous input. The routine
will then cause the user’s program to stop. An error in which the user’s input is
meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

234 • Reference Material IMSL MATH/LIBRARY Special Functions

Informational errors

In many cases, the best way to respond to an error condition is simply to correct
the input and rerun the program. In other cases, the user may want to take actions
in the program itself based on errors that occur. An error that may be used as the
basis for corrective action within the program is called an informational error. If
an informational error occurs, a user-retrievable code is set. A routine can return
at most one informational error for a single reference to the routine. The codes for
the informational error codes are printed in the error messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which
no user-retrievable code is set. Multiple error messages for this kind of error may
be printed. These errors, which generally are not described in the documentation,
include terminal errors as well as less serious errors. Corrective action within the
calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY Special
Functions. Each level has an associated PRINT attribute and a STOP attribute.
These attributes have default settings (YES or NO), but they may also be set by
the user. The purpose of having multiple error severity levels is to provide
independent control of actions to be taken for errors of different severity. Upon
return from an IMSL routine, exactly one error state exists. (A code 0 “error” is
no informational error.) Even if more than one informational error occurs, only
one message is printed (if the PRINT attribute is YES). Multiple errors for which
no corrective action within the calling program is reasonable or necessary result
in the printing of multiple messages (if the PRINT attribute for their severity level
is YES). Errors of any of the severity levels except level 5 may be informational
errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations. Default
attributes: PRINT=NO, STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events
occurring in the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may
require corrective action by the user or calling routine. A warning error
may be issued because the results are accurate to only a few decimal
places, because some of the output may be erroneous but most of the
output is correct, or because some assumptions underlying the analysis
technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT=YES, STOP=NO

IMSL MATH/LIBRARY Special Functions Reference Material • 235

Level 4: Fatal. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling routine must take corrective
action to recover. Default attributes: PRINT=YES, STOP=YES

Level 5: Terminal. A terminal error is serious. It usually is the result of an
incorrect specification, such as specifying a negative number as the
number of equations. These errors may also be caused by various
programming errors impossible to diagnose correctly in FORTRAN. The
resulting error message may be perplexing to the user. In such cases, the
user is advised to compare carefully the actual arguments passed to the
routine with the dummy argument descriptions given in the
documentation. Special attention should be given to checking argument
order and data types.

A terminal error is not an informational error because corrective action
within the program is generally not reasonable. In normal usage,
execution is terminated immediately when a terminal error occurs.
Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in
“Routines for Error Handling.”

Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a
nested sequence of lower-level IMSL routines. If an error occurs at a lower level
in such a nest of routines and if the lower-level routine cannot pass the
information up to the original user-called routine, then a traceback of the routines
is produced. The only common situation in which this can occur is when an IMSL
routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling
system: (1) to change the default actions, (2) to retrieve the integer code of an
informational error so as to take corrective action, and (3) to determine the
severity level of an error. The routines to use are ERSET, IERCD, and N1RTY,
respectively.

ERSET

Change the default printing or stopping actions when errors of a particular error
severity level occur.

Usage
CALL ERSET (IERSVR, IPACT, ISACT)

236 • Reference Material IMSL MATH/LIBRARY Special Functions

Arguments

IERSVR — Error severity level indicator. (Input)
If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set
for errors of the specified severity level.

IPACT — Printing action. (Input)

IPACT Action
–1 Do not change current setting(s).
0 Do not print.
1 Print.
2 Restore the default setting(s).

ISACT — Stopping action. (Input)

ISACT Action
–1 Do not change current setting(s).
0 Do not stop.
1 Stop.
2 Restore the default setting(s).

IERCD and N1RTY

The last two routines for interacting with the error handling system, IERCD and
N1RTY, are INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no
arguments, it may be used in the following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is
used in the following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5,
respectively. ITYPE = 3 and ITYPE = 6 are both warning errors, error severity
level 3. While ITYPE = 3 errors are informational errors (IERCD() ≠ 0), ITYPE =
6 errors are not informational errors (IERCD() = 0).

For software developers requiring additional interaction with the IMSL error
handling system, see Aird and Howell (1991).

Examples

Changes to Default Actions

Some possible changes to the default actions are illustrated below. The default
actions remain in effect for the kinds of errors not included in the call to ERSET.

IMSL MATH/LIBRARY Special Functions Reference Material • 237

To turn off printing of warning error messages:
CALL ERSET (3, 0, -1)

To stop if warning errors occur:
CALL ERSET (3, -1, 1)

To print all error messages:
CALL ERSET (0, 1, -1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Automatic Workspace Allocation
FORTRAN subroutines that work with arrays as input and output often require
extra arrays for use as workspace while doing computations or moving around
data. IMSL routines generally do not require the user explicitly to allocate such
arrays for use as workspace. On most systems the workspace allocation is handled
transparently. The only limitation is the actual amount of memory available on the
system.

On some systems the workspace is allocated out of a stack that is passed as a
FORTRAN array in a named common block WORKSP. A very similar use of a
workspace stack is described by Fox et al. (1978, pages 116−121). (For
compatibility with older versions of the IMSL Libraries, space is allocated from
the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For
example, the IMSL routine BSJS (page 103), which computes the values of first
kind real order Bessel functions, needs arrays for workspace. BSJS allocates
arrays from the common area and passes them to the lower-level routine B2JS
that does the computations. This scheme for using lower-level routines is
followed throughout the IMSL Libraries. The names of these routines have a “2”
in the second position (or in the third position in double precision routines having
a “D” prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few
cases, the 2-level routine allows additional options that the main routine does not
allow.

Prior to returning to the calling program, a routine that allocates workspace
generally deallocates that space so that it becomes available for use in other
routines.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent workspace
allocator is not available.

By default, the total amount of space allocated in the common area for storage of
numeric data is 5000 numeric storage units. (A numeric storage unit is the

238 • Reference Material IMSL MATH/LIBRARY Special Functions

amount of space required to store an integer or a real number. By comparison, a
double precision unit is twice this amount. Therefore, the total amount of space
allocated in the common area for storage of numeric data is 2500 double
precision units.) This space is allocated as needed for INTEGER, REAL, or other
numeric data. For larger problems in which the default amount of workspace is
insufficient, the user can change the allocation by supplying the FORTRAN
statements to define the array in the named common block and by informing the
IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are
COMMON /WORKSP/ RWKSP
REAL RWKSP(7000)
CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount
available in the common stack, the routine issues a fatal error message that
indicates how much space is needed and prints statements like those above to
guide the user in allocating the necessary amount. The program below uses IMSL
routine BSJS (page 103) to illustrate this feature.

This routine requires workspace that is just larger than twice the number of
function values requested.
 INTEGER N
 REAL BS(10000), X, XNU
 EXTERNAL BSJS
C Set Parameters
 XNU = .5
 X = 1.
 N = 6000
 CALL BSJS (XNU, X, N, BS)
 END

Output
*** TERMINAL ERROR from BSJS. Insufficient workspace for
*** current allocation(s). Correct by calling
*** IWKIN from main program with the three
*** following statements: (REGARDLESS OF
*** PRECISION)
*** COMMON /WORKSP/ RWKSP
*** REAL RWKSP(12018)
*** CALL IWKIN(12018)

*** TERMINAL ERROR from BSJS. The workspace requirement is
*** based on N =6000.
STOP

In most cases, the amount of workspace is dependent on the parameters of the
problem so the amount needed is known exactly. In a few cases, however, the
amount of workspace is dependent on the data (for example, if it is necessary to
count all of the unique values in a vector). Thus, the IMSL routine cannot tell in
advance exactly how much workspace is needed. In such cases, the error message
printed is an estimate of the amount of space required.

IMSL MATH/LIBRARY Special Functions Reference Material • 239

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate
named common block WKSPCH is provided for character workspace. In most
respects, this stack is managed in the same way as the numeric stack. The default
size of the character workspace is 2000 character units. (A character unit is the
amount of space required to store one character.) The routine analogous to IWKIN
used to change the default allocation is IWKCIN.

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information
and can be used to enhance portability of programs between different computers.
The routines IMACH, AMACH and DMACH describe the computer’s arithmetic. The
routine UMACH describes the input, output and error output unit numbers.

INTEGER FUNCTION IMACH(I)

IMACH retrieves machine integer constants which define the arithmetic used by
the computer.

IMACH(1) = Number of bits per integer storage unit.
IMACH(2) = Number of characters per integer storage unit.

Integers are represented in M-digit, base A form as

σ x Ak
k

k

M

=∑ 0

where σ is the sign and 0 ≤ xN < A, k = 0, …, M. Then,

IMACH(3) = A, the base.
IMACH(4) = M, the number of base-A digits.

IMACH(5) = A0 − 1, the largest integer.

The machine model assumes that floating-point numbers are represented in N-
digit, base B form as

σ B x BE
k

k
k

N −
=∑ 1

where σ is the sign and 0 ≤ xN < B, k = 1, …, N and E$ ≤ E ≤ E" Then,

IMACH(6) = B the base

IMACH(7) = NV the number of base-B digits in single precision

IMACH 80 5 = E
smin the smallest single precision exponent

IMACH 90 5 = E
smax the largest single precision exponent

IMACH(10) = NG the number of base-B digits in double precision

240 • Reference Material IMSL MATH/LIBRARY Special Functions

IMACH 110 5 = E
dmin the smallest double precision exponent

IMACH 120 5 = E
dmax the number of base-B digits in double precision

REAL FUNCTION AMACH(I)

The function subprogram AMACH retrieves real machine constants that define the
computer’s real or single-precision arithmetic. Such floating-point numbers are
represented in NV-digit, base B form as

σ B x BE
k

k
k

Ns −
=∑ 1

where σ is the sign, 0 ≤ xN < B, k = 1, …, NV and

E E E
s smin max≤ ≤

Note that B = IMACH(6), NV = IMACH(7),

E E
s smin max= =IMACH IMACH8 90 5 0 5, and

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that AMACH(6) return a signaling NaN. On IEEE format
computers that do not support signaling NaN, a quiet NaN is returned. If the
machine does not support a NaN, a special value near AMACH(2) is returned for
AMACH(6). On computers that do not have a special representation for infinity,
AMACH(2) returns the same value as AMACH(7).

AMACH is defined by the following table:

AMACH 1
10 5 = −

B
E

smin the smallest positive number

AMACH 2 10 5 4 9= − −B B
E Ns smax the largest number

AMACH 30 5 = −B Ns the smallest relative spacing

AMACH 4 10 5 = −B Ns the largest relative spacing

AMACH(5) = log10(B)

AMACH(6) = NaN (signaling not a number)

AMACH(7) = positive machine infinity

AMACH(7) = negative machine infinity

DOUBLE PRECISION FUNCTION DMACH(I)

The function subprogram DMACH retrieves real machine constants that define the
computer’s double precision arithmetic. Such double-precision floating-point
numbers are represented in NG-digit, base B form as

IMSL MATH/LIBRARY Special Functions Reference Material • 241

σ B x BE
k

k
k

Nd −
=∑ 1

where σ is the sign, 0 ≤ xN < B, k = 0, …, NG and

E E E
d dmin max≤ ≤

Note that B = IMACH(6), NG = IMACH(10),

E E
d dmin max= =IMACH IMACH11 120 5 0 5, and

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that DMACH(6) return a signaling NaN. On IEEE format
computers that do not support signaling NaN, a quiet NaN is returned. If the
machine does not support a NaN, a special value near DMACH(2) is returned for
DMACH(6). On computers that do not have a special representation for infinity,
DMACH(2) = DMACH(7).

DMACH is defined by the following table:

DMACH 1
10 5 = −

B
E

dmin the smallest positive number

DMACH 2 10 5 4 9= − −B B
E Nd dmax the largest number

DMACH 30 5 = −B Nd the smallest relative spacing

DMACH 4 10 5 = −B Nd the largest relative spacing

DMACH(5) = log10(B)

DMACH(6) = NaN (signaling not a number)

DMACH(7) = positive machine infinity

DMACH(7) = negative machine infinity

LOGICAL FUNCTION IFNAN(X), DIFNAN(DX)

The logical function IFNAN checks if the REAL argument X is NaN (not a
number). Similarly, DIFNAN checks if the DOUBLE PRECISION argument DX is
NaN.

The functions IFNAN and DIFNAN are provided to facilitate the transfer of
programs across computer systems. This is because the check for NaN can be
tricky and not portable across computer systems that do not adhere to the IEEE
standard. For example, on computers that support the IEEE standard for binary
arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus the check is performed as
IFNAN = X .NE. X

On other computers that do not use IEEE floating point format, the check can be
performed in single precision as

242 • Reference Material IMSL MATH/LIBRARY Special Functions

IFNAN = X .EQ. AMACH(6)

The function IFNAN or DIFNAN is equivalent to the specification of the function
Isnan listed in the Appendix, (IEEE 1985). The following example illustrates the
use of IFNAN. If X is NaN, a message is printed instead of X. (IMSL routine
UMACH is used to retrieve the output unit number for printing the message.)
 INTEGER NOUT
 REAL AMACH, X
 LOGICAL IFNAN
 EXTERNAL AMACH, IFNAN, UMACH
C
 CALL UMACH (2, NOUT)
C
 X = AMACH(6)
 IF (IFNAN(X)) THEN
 WRITE (NOUT,*) ’ X is NaN (not a number).’
 ELSE
 WRITE (NOUT,*) ’ X = ’, X
 END IF
C
 END

Output
X is NaN (not a number).

SUBROUTINE UMACH(N, NUNIT)

Routine UMACH sets or retrieves the input or output device unit numbers. UMACH is
set automatically so that the default FORTRAN unit numbers for standard input
and output are used. These unit numbers can be changed by inserting a call to
UMACH at the beginning of the main program that calls MATH/LIBRARY Special
Functions routines. If the input or output numbers are changed from the standard
values, the user should insert an appropriate OPEN statement in the calling
program.

The calling sequence for UMACH is
CALL UMACH (N, NUNIT)

where NUNIT is the input or output unit number that is either retrieved or set,
depending on which value of N is selected.

The arguments are summarized by the following table:

N Effect

1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in NUNIT.

−1 Sets the input unit number to NUNIT.

−2 Sets the output unit number to NUNIT.

−3 Sets the error output unit number to NUNIT.

IMSL MATH/LIBRARY Special Functions Reference Material • 243

If the value of N is negative, the input or output unit number is reset to NUNIT. If
the value of N is positive, the input or output unit number is returned in NUNIT. In
the following example, a terminal error is issued from the MATH/LIBRARY
Special Functions AMACH function since the argument is invalid. With a call to
UMACH, the error message will be written to a local file named ’CHECKERR’.
 INTEGER N, AMACH
 REAL X
 EXTERNAL AMACH, UMACH
C Set Parameter
 N = 0
C
 CALL UMACH (-3, 9)
 OPEN (UNIT=9,FILE=’CHECKERR’)
 X = AMACH(N)
 END

The output from this example, written to ’CHECKERR’ is:
*** TERMINAL ERROR 5 from AMACH. The argument must be
*** between 1 and 8 inclusive. N = 0

Reserved Names
When writing programs accessing IMSL MATH/LIBRARY Special Functions,
the user should choose FORTRAN names that do not conflict with names of
IMSL subroutines, functions, or named common blocks, such as the workspace
common block WORKSP (see page 237). The user needs to be aware of two types
of name conflicts that can arise. The first type of name conflict occurs when a
name (technically a symbolic name) is not uniquely defined within a program unit
(either a main program or a subprogram). For example, such a name conflict
exists when the name BSJS is used to refer both to a type REAL variable and to
the IMSL routine BSJS in a single program unit. Such errors are detected during
compilation and are easy to correct. The second type of name conflict, which can
be more serious, occurs when names of program units and named common blocks
are not unique. For example, such a name conflict would be caused by the user
defining a routine named WORKSP and also referencing a MATH/LIBRARY
Special Functions routine that uses the named common block WORKSP. Likewise,
the user must not define a subprogram with the same name as a subprogram in
MATH/LIBRARY Special Functions, that is referenced directly by the user’s
program or is referenced indirectly by other MATH/LIBRARY Special Functions
subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are
described in the User’s Manual and others that are not intended to be called by
the user and, hence, that are not documented. If the choice of names were
completely random over the set of valid FORTRAN names and if a program uses
only a small subset of MATH/LIBRARY Special Functions, the probability of
name conflicts is very small. Since names are usually chosen to be mnemonic,
however, the user may wish to take some precautions in choosing FORTRAN
names.

244 • Reference Material IMSL MATH/LIBRARY Special Functions

Many IMSL names consist of a root name that may have a prefix to indicate the
type of the routine. For example, the IMSL single precision routine for computing
Bessel functions of the first kind with real order has the name BSJS, which is the
root name, and the corresponding IMSL double precision routine has the name
DBSJS. Associated with these two routines are B2JS and DB2JS. BSJS and
DBSJS are listed in the Alphabetical Index of Routines, but B2JS and DB2JS are
not. The user of BSJS must consider both names BSJS and B2JS to be reserved;
likewise, the user of DBSJS must consider both names DBSJS and DB2JS to be
reserved. The names of all routines and named common blocks that are used by
MATH/LIBRARY Special Functions and that do not have a numeral in the
second position of the root name are listed in the Alphabetical Index of Routines.
Some of the routines in this Index are not intended to be called by the user and so
are not documented.

The careful user can avoid any conflicts with IMSL names if the following rules
are observed:

• Do not choose a name that appears in the Alphabetical Index of Routines in the
User’s Manual.

• Do not choose a name of three or more characters with a numeral in the second or
third position.

• Do not construct a name by replacing the leading “C” of a MATH/LIBRARY
Special Functions routine name with a “Z.” For example, users should not select
the name “ZCOS” because CCOS is a MATH/LIBRARY Special Functions
routine.

These simplified rules include many combinations that are, in fact, allowable.
However, if the user selects names that conform to these rules, no conflict will be
encountered.

Deprecated and Deleted Routines
The routines in the following list are being deprecated in Version 2.0 of
MATH/LIBRARY Special Functions. A deprecated routine is one that is no
longer used by anything in the library but is being included in the product for
those users who may be currently referencing it in their application. However, any
future versions of MATH/LIBRARY Special Functions will not include these
routines. If any of these routines are being called within an application, it is
recommended that you change your code or retain the deprecated routine before
replacing this library with the next version. Most of these routines were called by
users only when they needed to set up their own workspace. Thus, the impact of
these changes should be limited.

IMSL MATH/LIBRARY Special Functions Reference Material • 245

G2DF
G2IN
G3DF

The following FORTRAN intrinsic functions are no longer supplied by IMSL.
They can all be found in their manufacturer’s FORTRAN runtime libraries. If any
change must be made to the user’s application as a result of their removal from
the IMSL Libraries, it is limited to the redeclaration of the function from
“external” to “intrinsic.” Argument lists and results should be identical.

ACOS CEXP DATAN2 DSQRT

AINT CLOG DCOS DTAN

ALOG COS DCOSH DTANH

ALOG10 COSH DEXP EXP

ASIN CSIN DINT SIN

ATAN CSQRT DLOG SINH

ATAN2 DACOS DLOG10 SQRT

CABS DASIN DSIN TAN

CCOS DATAN DSINH TANH

IMSL MATH/LIBRARY Special Functions Gams Index • A-1

Appendix A: GAMS Index

Description
This index lists routines in MATH/LIBRARY Special Functions by a tree-
structured classification scheme known as GAMS. Boisvert, Howe, Kahaner, and
Springmann (1990) give the GAMS classification scheme. The classification
scheme given here is Version 2.0. The first level of the classification scheme is
denoted by a letter A thru Z as follows:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z. Other

There are seven levels in the classification scheme. Subclasses for levels 3, 5, and
7 are denoted by letters “a” thru “w”. Subclasses for levels 2, 4, and 6 are denoted
by the numbers 1 thru 23.

The index given in the following pages lists routines in MATH/LIBRARY
Special Functions within each GAMS subclass. The purpose of the routine appear
alongside the routine name.

A-2 • GAMS Index IMSL MATH/LIBRARY Special Functions

IMSL MATH/LIBRARY Special Functions

C ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)

C1 Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)
BINOM Evaluate the binomial coefficient.
FAC Evaluate the factorial of the argument.

C2 Powers, roots, reciprocals
CBRT Evaluate the cube root.
CCBRT Evaluate the complex cube root.

C3 Polynomials

C3a....... Orthogonal
INITS Initialize the orthogonal series so the function value is the

number of terms needed to insure the error is no larger
than the requested accuracy.

C3a2..... Chebyshev, Legendre
CSEVL Evaluate the N-term Chebyshev series.

C4 Elementary transcendental functions

C4a....... Trigonometric, inverse trigonometric
CACOS Evaluate the complex arc cosine.
CARG Evaluate the argument of a complex number.
CASIN Evaluate the complex arc sine.
CATAN Evaluate the complex arc tangent.
CATAN2 Evaluate the complex arc tangent of a ratio.
CCOT Evaluate the complex cotangent.
COSDG Evaluate the cosine for the argument in degrees.
COT Evaluate the cotangent.
SINDG Evaluate the sine for the argument in degrees.

C4b Exponential, logarithmic
ALNREL Evaluate the natural logarithm of one plus the argument.
CEXPRL Evaluate the complex exponential function factored from
first order.
CLNREL Evaluate the principal value of the complex natural
logarithm of one plus the argument.
CLOG10 Evaluate the principal value of the complex common
logarithm.
EXPRL Evaluate the exponential function factored from first
order, (EXP(X) − 1.0)/X.

C4c....... Hyperbolic, inverse hyperbolic
ACOSH Evaluate the arc hyperbolic cosine.

IMSL MATH/LIBRARY Special Functions Gams Index • A-3

ASINH Evaluate the arc hyperbolic sine.
ATANH Evaluate the arc hyperbolic tangent.
CACOSH Evaluate the complex arc hyperbolic cosine.
CASINH Evaluate the complex arc hyperbolic sine.
CATANH Evaluate the complex arc hyperbolic tangent.
CCOSH Evaluate the complex hyperbolic cosine.
CSINH Evaluate the complex hyperbolic sine.
CTAN Evaluate the complex tangent.
CTANH Evaluate the complex hyperbolic tangent.

C5 Exponential and logarithmic integrals

ALI Evaluate the logarithmic integral.
CHI Evaluate the hyperbolic cosine integral.
CI Evaluate the cosine integral.CIN Evaluate a function

closely related to the cosine integral.
CINH Evaluate a function closely related to the hyperbolic cosine

integral.
E1 Evaluate the exponential integral for arguments greater

than zero and the Cauchy principal value of the integral for
arguments less than zero.

EI Evaluate the exponential integral for arguments greater
than zero and the Cauchy principal value for arguments
less than zero.

ENE Evaluate the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

SHI Evaluate the hyperbolic sine integral.
SI Evaluate the sine integral.

C7 Gamma

C7a Gamma, log gamma, reciprocal gamma
ALGAMS Return the logarithm of the absolute value of the gamma

function and the sign of gamma.
ALNGAM Evaluate the logarithm of the absolute value of the gamma

function.
CGAMMA Evaluate the complex gamma function.
CGAMR Evaluate the reciprocal complex gamma function.
CLNGAM Evaluate the complex natural logarithm of the gamma

function.
GAMMA Evaluate the complete gamma function.
GAMR Evaluate the reciprocal gamma function.
POCH Evaluate a generalization of Pochhammer’s symbol.
POCH1 Evaluate a generalization of Pochhammer’s symbol starting

from the first order.

C7b Beta, log beta
ALBETA Evaluate the natural logarithm of the complete beta

function for positive arguments.

A-4 • GAMS Index IMSL MATH/LIBRARY Special Functions

BETA Evaluate the complete beta function.
CBETA Evaluate the complex complete beta function.
CLBETA Evaluate the complex logarithm of the complete beta

function.

C7c....... Psi function
CPSI Evaluate the logarithmic derivative of the gamma function

for a complex argument.
PSI Evaluate the logarithmic derivative of the gamma function.

C7e....... Incomplete gamma
CHIDF Evaluate the chi-squared distribution function.
CHIIN Evaluate the inverse of the chi-squared distribution

function.
GAMDF Evaluate the gamma distribution function.
GAMI Evaluate the incomplete gamma function.
GAMIC Evaluate the complementary incomplete gamma function.
GAMIT Evaluate the Tricomi form of the incomplete gamma

function.

C7f Incomplete beta

BETAI Evaluate the incomplete beta function ratio.
BETDF Evaluate the beta probability distribution function.
BETIN Evaluate the inverse of the beta distribution function.

C8 Error functions

C8a....... Error functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluate the standard normal (Gaussian) distribution
function.

ANORIN Evaluate the inverse of the standard normal (Gaussian)
distribution function.

CERFE Evaluate the complex scaled complemented error function.
ERF Evaluate the error function.
ERFC Evaluate the complementary error function.
ERFCE Evaluate the exponentially scaled complementary error

function.
ERFCI Evaluate the inverse complementary error function.
ERFI Evaluate the inverse error function.

C8b Fresnel integrals
FRESC Evaluate the cosine Fresnel integral.
FRESS Evaluate the sine Fresnel integral.

C8c....... Dawson’s integral
DAWS Evaluate Dawson function.

IMSL MATH/LIBRARY Special Functions Gams Index • A-5

C10 Bessel functions

C10a J, Y, H(1); H(2)

C10a1 .. Real argument, integer order
BSJ0 Evaluate the Bessel function of the first kind of order zero.
BSJ1 Evaluate the Bessel function of the first kind of order one.
BSJNS Evaluate a sequence of Bessel functions of the first kind

with integer order and real arguments.
BSY0 Evaluate the Bessel function of the second kind of order

zero.
BSY1 Evaluate the Bessel function of the second kind of order

one.

C10a2 .. Complex argument, integer order
CBJNS Evaluate a sequence of Bessel functions of the first kind

with integer order and complex arguments.

C10a3 .. Real argument, real order
BSJS Evaluate a sequence of Bessel functions of the first kind

with real order and real positive arguments.
BSYS Evaluate a sequence of Bessel functions of the second kind

with real nonnegative order and real positive arguments.

C10a4 .. Complex argument, real order
CBJS Evaluate a sequence of Bessel functions of the first kind

with real order and complex arguments.
CBYS Evaluate a sequence of Bessel functions of the second kind

with real order and complex arguments.

C10b I, K

C10b1 .. Real argument, integer order
BSI0 Evaluate the modified Bessel function of the first kind of

order zero.
BSI0E Evaluate the exponentially scaled modified Bessel function

of the first kind of order zero.
BSI1 Evaluate the modified Bessel function of the first kind of

order one.
BSI1E Evaluate the exponentially scaled modified Bessel function

of the first kind of order one.
BSINS Evaluate a sequence of Modified Bessel functions of the

first kind with integer order and real arguments.
BSK0 Evaluate the modified Bessel function of the third kind of

order zero.
BSK0E Evaluate the exponentially scaled modified Bessel function

of the third kind of order zero.
BSK1 Evaluate the modified Bessel function of the third kind of

order one.

A-6 • GAMS Index IMSL MATH/LIBRARY Special Functions

BSK1E Evaluate the exponentially scaled modified Bessel function
of the third kind of order one.

C10b2 .. Complex argument, integer order
CBINS Evaluate a sequence of Modified Bessel functions of the

first kind with integer order and complex arguments.
C10b3 Real argument, real order
BSIES Evaluate a sequence of exponentially scaled Modified

Bessel functions of the first kind with nonnegative real
order and real positive arguments.

BSIS Evaluate a sequence of Modified Bessel functions of the
first kind with real order and real positive arguments.

BSKES Evaluate a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

BSKS Evaluate a sequence of modified Bessel functions of the
third kind of fractional order.

C10b4 .. Complex argument, real order
CBIS Evaluate a sequence of Modified Bessel functions of the

first kind with real order and complex arguments.
CBKS Evaluate a sequence of Modified Bessel functions of the

second kind with real order and complex arguments.

C10c..... Kelvin functions
AKEI0 Evaluate the Kelvin function of the second kind, kei, of

order zero.
AKEI1 Evaluate the Kelvin function of the second kind, kei, of

order one.
AKEIP0 Evaluate the Kelvin function of the second kind, kei, of

order zero.
AKER0 Evaluate the Kelvin function of the second kind, ker, of

order zero.
AKER1 Evaluate the Kelvin function of the second kind, ker, of

order one.
AKERP0 Evaluate the derivative of the Kelvin function of the

second kind, ker, of order zero.
BEI0 Evaluate the Kelvin function of the first kind, bei, of order

zero.
BEI1 Evaluate the Kelvin function of the first kind, bei, of order

one.
BEIP0 Evaluate the derivative of the Kelvin function of the first

kind, bei, of order zero.
BER0 Evaluate the Kelvin function of the first kind, ber, of order

zero.
BER1 Evaluate the Kelvin function of the first kind, ber, of order

one.

IMSL MATH/LIBRARY Special Functions Gams Index • A-7

BERP0 Evaluate the derivative of the Kelvin function of the first
kind, ber, of order zero.

C10d Airy and Scorer functions
AI Evaluate the Airy function.
AID Evaluate the derivative of the Airy function.
AIDE Evaluate the exponentially scaled derivative of the Airy

function.
AIE Evaluate the exponentially scaled Airy function.
BI Evaluate the Airy function of the second kind.
BID Evaluate the derivative of the Airy function of the second

kind.
BIDE Evaluate the exponentially scaled derivative of the Airy

function of the second kind.
BIE Evaluate the exponentially scaled Airy function of the

second kind.

C14 Elliptic integrals
CEJCN Evaluate the complex Jacobi elliptic integral cn(z, m).
CEJDN Evaluate the complex Jacobi elliptic integral dn(z, m).
CEJSN Evaluate the complex Jacobi elliptic function sn(z, m).
EJCN Evaluate the Jacobi elliptic function cn(x, m).
EJDN Evaluate the Jacobi elliptic function dn(x, m).
EJSN Evaluate the Jacobi elliptic function sn(x, m).
ELE Evaluate the complete elliptic integral of the second kind

E(x).
ELK Evaluate the complete elliptic integral of the kind K(x).
ELRC Evaluate an elementary integral from which inverse

circular functions, logarithms and inverse hyperbolic
functions can be computed.

ELRD Evaluate Carlson’s incomplete elliptic integral of the
second kind RD(X, Y, Z).

ELRF Evaluate Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, Z).

ELRJ Evaluate Carlson’s incomplete elliptic integral of the third
kind RJ(X, Y, Z, RHO).

C15 Weierstrass elliptic functions
CWPL Evaluate the Weierstrass P-function in the lemniscat case

for complex argument with unit period parallelogram.
CWPLD Evaluate the first derivative of the Weierstrass P-function

in the lemniscatic case for complex argum with unit period
parallelogram.

CWPQ Evaluate the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

A-8 • GAMS Index IMSL MATH/LIBRARY Special Functions

CWPQD Evaluate the first derivative of the Weierstrass P-function
in the equianharmonic case for complex argument with unit
period parallelogram.

C17 Mathieu functions
MATCE Evaluate a sequence of even, periodic, integer order, real

Mathieu functions.
MATEE Evaluate the eigenvalues for the periodic Mathieu

functions.
MATSE Evaluate a sequence of odd, periodic, integer order, real

Mathieu functions.

C19 Other special functions
SPENC Evaluate a form of Spence’s integral.

L........... STATISTICS, PROBABILITY

L5......... Function evaluation (search also class C)

L5a....... Univariate

L5a1..... Cumulative distribution functions, probability density functions
GCDF Evaluate a general continuous cumulative distribution

function given ordinates of the density.

L5a1b... Beta, binomial
BETDF Evaluate the beta probability distribution function.
BINDF Evaluate the binomial distribution function.
BINPR Evaluate the binomial probability function.
CHIDF Evaluate the chi-squared distribution function.
CSNDF Evaluate the noncentral chi-squared distribution function.

L5a1f.... F distribution
FDF Evaluate the F distribution function.

L5a1g... Gamma, general, geometric
GAMDF Evaluate the gamma distribution function.

L5a1h... Halfnormal, hypergeometric
HYPDF Evaluate the hypergeometric distribution function.
HYPPR Evaluate the hypergeometric probability function.

L5a1k... Kendall F statistic, Kolmogorov-Smirnov
AKS1DF Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness of fit D+ or D- test statistic
based on continuous data for one sample.

AKS2DF Evaluate the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on
continuous data for two samples.

IMSL MATH/LIBRARY Special Functions Gams Index • A-9

L5a1n... Negative binomial, normal
ANORDF Evaluate the standard normal (Gaussian) distribution

function.

L5a1p... Pareto, Poisson
POIDF Evaluate the Poisson distribution function.
POIPR Evaluate the Poisson probability function.

L5a1t.... t distribution
TDF Evaluate the Student’s t distribution function.
TNDF Evaluate the noncentral Student’s t distribution function.

L5a2..... Inverse cumulative distribution functions, sparsity functions
GCIN Evaluate the inverse of a general continuous cumulative

distribution function given ordinates of the density.

L5a2b... Beta, binomial
BETIN Evaluate the inverse of the beta distribution function.

L5a2c... Cauchy, chi-squared
CHIIN Evaluate the inverse of the chi-squared distribution

function.

L5a2f ...F distribution
FIN Evaluate the inverse of the F distribution function.

L5a2n... Negative binomial, normal, normal scores
ANORIN Evaluate the inverse of the standard normal (Gaussian)

distribution function.

L5a2t....t distribution
TIN Evaluate the inverse of the Student’s t distribution

function.

L5b Multivariate

L5b1 Cumulative distribution functions, probability density functions

L5b1n... Normal
BNRDF Evaluate the bivariate normal distribution function.

N.......... DATA HANDLING

N1........ Input, output

IFNAN .. Check if a value is NaN (not a number).

N4 Storage management (e.g., stacks, heaps, trees)
IWKCIN Initialize bookkeeping locations describing the character

workspace stack.
IWKIN Initialize bookkeeping locations describing the workspace

stack.

R SERVICE ROUTINES

A-10 • GAMS Index IMSL MATH/LIBRARY Special Functions

R1 Machine-dependent constants
AMACH Retrieve single-precision machine constants.
DMACH Retrieve double precision machine constants.
IFNAN Check if a value is NaN (not a number).
IMACH Retrieve integer machine constants.
UMACH Set or retrieve input or output device unit numbers.

R3 Error handling
ERSET Set error handler default print and stop actions.
IERCD Retrieve the code for an informational error.

IMSL MATH/LIBRARY Special Functions Appendix B: Alphabetical Summary of Routines • B- 1

Appendix B: Alphabetical Summary
of Routines

IMSL MATH/LIBRARY Special Functions
ACOSH 23 Evaluate the arc hyperbolic cosine.

AI 133 Evaluate the Airy function.

AID 135 Evaluate the derivative of the Airy function.

AIDE 139 Evaluate the exponentially scaled derivative of the Airy
function.

AIE 137 Evaluate the exponentially scaled Airy function.

AKEI0 124 Evaluate the Kelvin function of the second kind, kei, of
order zero.

AKEI1 130 Evaluate the Kelvin function of the second kind, kei, of
order one.

AKEIP0 127 Evaluate the Kelvin function of the second kind, kei, of
order zero.

AKER0 123 Evaluate the Kelvin function of the second kind, ker, of
order zero.

AKER1 130 Evaluate the Kelvin function of the second kind, ker, of
order one.

AKERP0 126 Evaluate the derivative of the Kelvin function of the second
kind, ker, of order zero.

AKS1DF 181 Evaluate the distribution function of the one-sided
Kolmogorov-Smirnov goodness of fit D+ or D− test statistic
based on continuous data for one sample.

AKS2DF 184 Evaluate the distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on continuous
data for two samples.

ALBETA 64 Evaluate the natural logarithm of the complete beta function
for positive arguments.

B-2 • Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

ALGAMS 52 Return the logarithm of the absolute value of the gamma
function and the sign of gamma.

ALI 31 Evaluate the logarithmic integral.

ALNGAM 49 Evaluate the logarithm of the absolute value of the gamma
function.

ALNREL 6 Evaluate the natural logarithm of one plus the argument.

AMACH 240 Retrieve single-precision machine constants.

ANORDF 186 Evaluate the standard normal (Gaussian) distribution
function.

ANORIN 188 Evaluate the inverse of the standard normal (Gaussian)
distribution function.

ASINH 21 Evaluate the arc hyperbolic sine.

ATANH 24 Evaluate the arc hyperbolic tangent.

BEI0 122 Evaluate the Kelvin function of the first kind, bei, of order
zero.

BEI1 129 Evaluate the Kelvin function of the first kind, bei, of order
one.

BEIP0 125 Evaluate the derivative of the Kelvin function of the first
kind, bei, of order zero.

BER0 121 Evaluate the Kelvin function of the first kind, ber, of order
zero.

BER1 128 Evaluate the Kelvin function of the first kind, ber, of order
one.

BERP0 124 Evaluate the derivative of the Kelvin function of the first
kind, ber, of order zero.

BETA 62 Evaluate the complete beta function.

BETAI 66 Evaluate the incomplete beta function ratio.

BETDF 189 Evaluate the beta probability distribution function.

BETIN 191 Evaluate the inverse of the beta distribution function.

BI 134 Evaluate the Airy function of the second kind.

BID 136 Evaluate the derivative of the Airy function of the second
kind.

BIDE 140 Evaluate the exponentially scaled derivative of the Airy
function of the second kind.

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines • B-3

BIE 138 Evaluate the exponentially scaled Airy function of the
second kind.

BINDF 172 Evaluate the binomial distribution function.

BINOM 43 Evaluate the binomial coefficient.

BINPR 173 Evaluate the binomial probability function.

BNRDF 192 Evaluate the bivariate normal distribution function.

BSI0 89 Evaluate the modified Bessel function of the first kind of
order zero.

BSI0E 95 Evaluate the exponentially scaled modified Bessel function
of the first kind of order zero.

BSI1 91 Evaluate the modified Bessel function of the first kind of
order one.

BSI1E 95 Evaluate the exponentially scaled modified Bessel function
of the first kind of order one.

BSIES 107 Evaluate a sequence of exponentially scaled modified Bessel
functions of the first kind with nonnegative real order and
real positive arguments.

BSINS 100 Evaluate a sequence of modified Bessel functions of the first
kind with integer order and real arguments.

BSIS 106 Evaluate a sequence of modified Bessel functions of the first
kind with real order and real positive arguments.

BSJ0 84 Evaluate the Bessel function of the first kind of order zero.

BSJ1 86 Evaluate the Bessel function of the first kind of order one.

BSJNS 98 Evaluate a sequence of Bessel functions of the first kind with
integer order and real arguments.

BSJS 103 Evaluate a sequence of Bessel functions of the first kind with
real order and real positive arguments.

BSK0 92 Evaluate the modified Bessel function of the third kind of
order zero.

BSK0E 96 Evaluate the exponentially scaled modified Bessel function
of the third kind of order zero.

BSK1 93 Evaluate the modified Bessel function of the third kind of
order one

BSK1E 97 Evaluate the exponentially scaled modified Bessel function
of the third kind of order one.

B-4 • Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

BSKES 110 Evaluate a sequence of exponentially scaled modified Bessel
functions of the third kind of fractional order.

BSKS 109 Evaluate a sequence of modified Bessel functions of the third
kind of fractional order.

BSY0 87 Evaluate the Bessel function of the second kind of order
zero.

BSY1 88 Evaluate the Bessel function of the second kind of order one.

BSYS 105 Evaluate a sequence of Bessel functions of the second kind
with real nonnegative order and real positive arguments.

CACOS 16 Evaluate the complex arc cosine.

CACOSH 24 Evaluate the complex arc hyperbolic cosine.

CARG 1 Evaluate the argument of a complex number.

CASIN 15 Evaluate the complex arc sine.

CASINH 22 Evaluate the complex arc hyperbolic sine.

CATAN 17 Evaluate the complex arc tangent.

CATAN2 18 Evaluate the complex arc tangent of a ratio.

CATANH 25 Evaluate the complex arc hyperbolic tangent.

CBETA 63 Evaluate the complex complete beta function.

CBINS 102 Evaluate a sequence of modified Bessel functions of the first
kind with integer order and complex arguments.

CBIS 115 Evaluate a sequence of modified Bessel functions of the first
kind with real order and complex arguments.

CBJNS 99 Evaluate a sequence of Bessel functions of the first kind with
integer order and complex arguments.

CBJS 112 Evaluate a sequence of Bessel functions of the first kind with
real order and complex arguments.

CBKS 117 Evaluate a sequence of modified Bessel functions of the third
kind with real order and complex arguments.

CBRT 2 Evaluate the cube root

CBYS 113 Evaluate a sequence of Bessel functions of the second kind
with real order and complex arguments.

CCBRT 3 Evaluate the complex cube root.

CCOSH 20 Evaluate the complex hyperbolic cosine.

CCOT 12 Evaluate the complex cotangent.

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines • B-5

CEJCN 162 Evaluate the complex Jacobi elliptic integral cn(z, m).

CEJDN 164 Evaluate the complex Jacobi elliptic integral dn(z, m).

CEJSN 159 Evaluate the complex Jacobi elliptic function sn(z, m).

CERFE 75 Evaluate the complex scaled complemented error function.

CEXPRL 5 Evaluate the complex exponential function factored from
first order.

CGAMMA 46 Evaluate the complex gamma function.

CGAMR 48 Evaluate the reciprocal complex gamma function.

CHI 37 Evaluate the hyperbolic cosine integral.

CHIDF 194 Evaluate the chi-squared distribution function.

CHIIN 196 Evaluate the inverse of the chi-squared distribution function.

CI 34 Evaluate the cosine integral.

CIN 35 Evaluate a function closely related to the cosine integral.

CINH 38 Evaluate a function closely related to the hyperbolic cosine
integral.

CLBETA 65 Evaluate the complex logarithm of the complete beta
function.

CLNGAM 51 Evaluate the complex natural logarithm of the gamma
function.

CLNREL 7 Evaluate the principal value of the complex natural logarithm
of one plus the argument.

CLOG10 6 Evaluate the principal value of the complex common
logarithm.

COSDG 14 Evaluate the cosine for the argument in degrees.

COT 11 Evaluate the cotangent.

CPSI 58 Evaluate the logarithmic derivative of the gamma function
for a complex argument.

CSEVL 231 Evaluate the N-term Chebyshev series.

CSINH 19 Evaluate the complex hyperbolic sine.

CSNDF 197 Evaluate the noncentral chi-squared distribution function.

CTAN 10 Evaluate the complex tangent.

CTANH 20 Evaluate the complex hyperbolic tangent.

B-6 • Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

CWPL 154 Evaluate the Weierstrass P-function in the lemniscat case for
complex argument with unit period parallelogram.

CWPLD 155 Evaluate the first derivative of the Weierstrass P-function in
the lemniscatic case for complex argum with unit period
parallelogram.

CWPQ 156 Evaluate the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

CWPQD 157 Evaluate the first derivative of the Weierstrass P-function in
the equianharmonic case for complex argument with unit
period parallelogram.

DAWS 79 Evaluate Dawson function.

DMACH 240 Retrieve double precision machine constants.

E1 29 Evaluate the exponential integral for arguments greater than
zero and the Cauchy principal value of the integral for
arguments less than zero.

EI 28 Evaluate the exponential integral for arguments greater than
zero and the Cauchy principal value for arguments less than
zero.

EJCN 160 Evaluate the Jacobi elliptic function cn(x, m).

EJDN 163 Evaluate the Jacobi elliptic function dn(x, m).

EJSN 158 Evaluate the Jacobi elliptic function sn(x, m).

ELE 147 Evaluate the complete elliptic integral of the second kind
E(x).

ELK 145 Evaluate the complete elliptic integral of the kind K(x).

ELRC 151 Evaluate an elementary integral from which inverse circular
functions, logarithms and inverse hyperbolic functions can
be computed.

ELRD 149 Evaluate Carlson’s incomplete elliptic integral of the second
kind RD(X, Y, Z).

ELRF 148 Evaluate Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, Z).

ELRJ 150 Evaluate Carlson’s incomplete elliptic integral of the third
kind RJ(X, Y, Z, RHO).

ENE 30 Evaluate the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

ERF 70 Evaluate the error function.

ERFC 71 Evaluate the complementary error function.

IMSL MATH/LIBRARY Special Functions Alphabetical Summary of Routines • B-7

ERFCE 73 Evaluate the exponentially scaled complementary error
function.

ERFCI 77 Evaluate the inverse complementary error function.

ERFI 76 Evaluate the inverse error function.

ERSET 235 Set error handler default print and stop actions.

EXPRL 4 Evaluate the exponential function factored from first order,
(EXP(X) − 1.0)/X.

FAC 42 Evaluate the factorial of the argument.

FDF 200 Evaluate the F distribution function.

FIN 201 Evaluate the inverse of the F distribution function.

FRESC 81 Evaluate the cosine Fresnel integral.

FRESS 81 Evaluate the sine Fresnel integral.

GAMDF 203 Evaluate the gamma distribution function.

GAMI 53 Evaluate the incomplete gamma function.

GAMIC 55 Evaluate the complementary incomplete gamma function.

GAMIT 56 Evaluate the Tricomi form of the incomplete gamma
function.

GAMMA 44 Evaluate the complete gamma function.

GAMR 48 Evaluate the reciprocal gamma function.

GCDF 210 Evaluate a general continuous cumulative distribution
function given ordinates of the density.

GCIN 212 Evaluate the inverse of a general continuous cumulative
distribution function given ordinates of the density.

HYPDF 175 Evaluate the hypergeometric distribution function.

HYPPR 177 Evaluate the hypergeometric probability function.

IERCD 236 Retrieve the code for an informational error

IFNAN 241 Check if a value is NaN (not a number).

IMACH 239 Retrieve integer machine constants.

INITS 230 Initialize the orthogonal series so the function value is the
number of terms needed to insure the error is no larger than
the requested accuracy.

IWKCIN 239 Initialize bookkeeping locations describing the character
workspace stack.

B-8 • Alphabetical Summary of Routines IMSL MATH/LIBRARY Special Functions

IWKIN 238 Initialize bookkeeping locations describing the workspace
stack.

MATCE 220 Evaluate a sequence of even, periodic, integer order, real
Mathieu functions.

MATEE 217 Evaluate the eigenvalues for the periodic Mathieu functions.

MATSE 223 Evaluate a sequence of odd, periodic, integer order, real
Mathieu functions

N1RTY 236 Retrieve an error type for the most recently called IMSL
routine.

POCH 59 Evaluate a generalization of Pochhammer’s symbol.

POCH1 61 Evaluate a generalization of Pochhammer’s symbol starting
from the first order.

POIDF 178 Evaluate the Poisson distribution function.

POIPR 180 Evaluate the Poisson probability function.

PSI 57 Evaluate the logarithmic derivative of the gamma function.

SHI 36 Evaluate the hyperbolic sine integral.

SI 33 Evaluate the sine integral.

SINDG 13 Evaluate the sine for the argument in degrees.

SPENC 229 Evaluate a form of Spence’s integral.

TDF 205 Evaluate the Student’s t distribution function.

TIN 207 Evaluate the inverse of the Student’s t distribution function.

TNDF 208 Evaluate the noncentral Student’s t distribution function.

UMACH 242 Set or retrieve input or output device unit numbers.

IMSL MATH/LIBRARY Special Functions Appendix C: References • C-1

Appendix C: References

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables ,
National Bureau of Standards, Washington.

Aird and Howell

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103,
IMSL, Houston.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based
on local procedures, Journal of the ACM, 17, 589−602.

Barnett

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel
functions of real order to machine accuracy, Computer Physics Communication,
21, 297−314.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L.
Springmann (1990), Guide to Available Mathematical Software , NISTIR 90-
4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A
framework for the management of scientific software, ACM Transactions on
Mathematical Software, 11, 313−355.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974b), Incomplete beta ratio,
Communications of the ACM, 17, 156−157.

Bosten, Nancy E., and E.L. Battiste (1974), Remark on algorithm 179,
Communications of the ACM, 17, 153.

C-2 • Appendix C: References IMSL MATH/LIBRARY Special Functions

Burgoyne

Burgoyne, F.D. (1963), Approximations to Kelvin functions, Mathematics of
Computation 83, 295−298.

Carlson

Carlson, B.C. (1979), Computing elliptic integrals by duplication, Numerische
Mathematik, 33, 1−16.

Carlson and Notis

Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic
integrals, ACM Transactions on Mathematical Software, 7, 398−403.

Cody

Cody, W.J. (1969) Performance testing of function subroutines, Proceedings of
the Spring Joint Computer Conference , American Federation for Information
Processing Societies Press, Montvale, New Jersey, 759−763.

Cody, W.J. (1983), Algorithm 597: A sequence of modified Bessel functions of
the first kind, ACM Transactions on Mathematical Software, 9, 242−245.

Cody et al.

Cody, W.J., R.M. Motley, and L.W. Fullerton (1976), The computation of real
fractional order Bessel functions of the second kind, Applied Mathematics
Division Technical Memorandum No. 291 , Argonne National Laboratory,
Argonne.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution
integrals, Applied Statistics, 17, 190−192.

Eckhardt

Eckhardt, Ulrich (1977), A rational approximation to Weierstrass’ P-function. II:
The Lemniscatic case, Computing, 18, 341−349.

Eckhardt, Ulrich (1980), Algorithm 549: Weierstrass’ elliptic functions, ACM
Transactions on Mathematical Software, 6, 112−120.

IMSL MATH/LIBRARY Special Functions Appendix C: References • C-3

Fox et al.

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical
subroutine library, ACM Transactions on Mathematical Software, 4, 104−126.

Gautschi

Gautschi, Walter (1964), Bessel functions of the first kind, Communications of
the ACM, 7, 187−198.

Gautschi, Walter (1969), Complex error function, Communications of the ACM,
12, 635. Gautschi, Walter (1970), Efficient computation of the complex error
function, SIAM Journal on Mathematical Analysis , 7, 187−198.

Gautschi, Walter (1974), Algorithm 471: Exponential integrals, Collected
Algorithms from CACM, 471.

Gautschi, Walter (1979), A computational procedure for the incomplete gamma
function, ACM Transactions on Mathematical Software, 5, 466−481.

Gautschi, Walter (1979), Algorithm 542: Incomplete gamma functions, ACM
Transactions on Mathematical Software, 5, 482−489.

Gradshteyn and Ryzhik

Gradshteyn, I.S. and I.M. Ryzhik (1965), Table of Integrals, Series, and
Products, (translated by Scripta Technica, Inc.), Academic Press, New York.

Hart et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

Hill

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617
−619.

Hodge

Hodge, D.B. (1972), The calculation of the eigenvalues and eigenvectors of
Mathieu’s equation, NASA Contractor Report, The Ohio State University,
Columbus, Ohio.

C-4 • Appendix C: References IMSL MATH/LIBRARY Special Functions

IEEE

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point
Arithmetic, The IEEE, Inc., New York.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Distributions-1, John
Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Distributions-2,
John Wiley & Sons, New York.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New
York.

Kim and Jennrich

Kim, P.J., and Jennrich, R.I. (1973), Tables of the exact sampling distribution of
the two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables
in Mathematical Statistics, Volume 1, (edited by H.L. Harter and D.B. Owen),
American Mathematical Society, Providence, Rhode Island.

Kinnucan and Kuki

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function
subroutine, Computation Center, University of Chicago.

Luke

Luke, Y.L. (1969), The Special Function and their Approximations , Volume 1,
Academic Press, 34.

NATS FUNPACK

NATS (National Activity to Test Software) FUNPACK (1976), Argonne National
Laboratory, Argonne Code Center, Argonne.

Olver and Sookne

Olver, F.W.J., and D.J. Sookne (1972), A note on the backward recurrence
algorithms, Mathematics of Computation, 26, 941−947.

IMSL MATH/LIBRARY Special Functions Appendix C: References • C-5

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t-distribution,
Biometrika, 52, 437−446.

Pennisi

Pennisi, L.L. (1963), Elements of Complex Variables, Holt, Rinehart and
Winston, New York.

Skovgaard

Skovgaard, Ove (1975), Remark on algorithm 236, ACM Transactions on
Mathematical Software, 1, 282−284.

Sookne

Sookne, D.J. (1973a), Bessel functions I and J of complex argument and integer
order, National Bureau of Standards Journal of Research B , 77B, 111−114.

Sookne, D.J. (1973b), Bessel functions of real argument and integer order,
National Bureau of Standards Journal of Research B , 77A, 125−132.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144−158.

Temme

Temme, N. M. (1975), On the numerical evaluation of the modified Bessel
function of the third kind, Journal of Computational Physics , 19, 324−337.

Thompson and Barnett

Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions Iν(z) and Kν
(z) of real order and complex argument, to selected accuracy, Computer Physics
Communication, 47, 245−257.

IMSL MATH/LIBRARY Special Functions Product Support • v

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL Libraries. Visual Numerics can consult on the following topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• for PC support, pcsupport@houston.vni.com.

• for non-PC support, support@houston.vni.com.

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your local E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Numerical Libraries
Version 3.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description
of the problem

IMSL MATH/LIBRARY Special Functions Index • i

Index

A

Airy function 135
derivative 137
exponentially scaled 139

derivative 140
second kind 136

derivative 138
exponentially scaled 140
exponentially scaled derivative

140

B

Bessel functions 83
first kind

integer order 98, 99
order one 86
order zero 84
real order 103, 112

modified
exponentially scaled 95, 96, 97,

107, 110
first kind, integer order 100, 102
first kind, nonnegative real order

107
first kind, order one 91, 95
first kind, order zero 89, 95
first kind, real order 106, 115
second kind, real order 117
third kind, fractional order 109,

110
third kind, order one 93, 97
third kind, order zero 92, 96

second kind
order one 88
order zero 87
real nonnegative order 105
real order 113

beta functions
complete 65

complex 66
complex logarithm 65
natural logarithm 64

incomplete 66
binomial coefficient 43

C

Cauchy principal value 28, 29
character workspace 239
characteristic values 217
Chebyshev series 227, 231
common blocks vii
complex numbers

evaluating 1
cosine

arc
hyperbolic 24

complex 16
hyperbolic 20

hyperbolic
complex arc 24

in degrees 14
integrals 34, 35

hyperbolic 37, 38
cotangent

complex 12
evaluating 11

cube roots
complex 3
evaluating 2

cumulative distribution functions
(CDF) 169

D

Dawson’s function 79
distribution functions 167

beta 189
inverse 191

binomial 172
bivariate normal 192
chi-squared 194

inverse 196
noncentral 197

cumulative (CDF) 168
F 200

inverse 201

ii • Index IMSL MATH/LIBRARY Special Functions

gamma 203
general continuous cumulative 210

inverse 212
hypergeometric 175
Kolmogorov-Smirnov goodness of

fit 184
Poisson 178
standard normal (Gaussian) 186

inverse 188
Student’s t 205

noncentral 208
double precision v

E

eigenvalues 217
elementary functions iv, 1
elliptic functions 153
elliptic integrals 144

complete 145
second kind 147

first kind
Carlson’s incomplete 148

second kind
Carlson’s incomplete 149

third kind
Carlson’s incomplete 150

Erlang distribution 204
error functions 70

complementary 71
complex scaled 75
exponentially scaled 73
inverse 76

inverse 78
error-handling vii
errors 233

alert 172, 234
fatal 235
informational 234
note 172, 234
severity level vii
terminal 172, 233, 235
warning 172, 234

exponential functions
complex 5
first order 4, 5

exponential integrals 28, 29, 30
of integer order 30

F

factorial 42
Fresnal integrals 69, 70

cosine 81
sine 81

G

gamma distributions
standard 168

gamma functions 41
complete 44
complex 46

reciprocal 48
incomplete 53

complementary 55
Tricomi form 56

logarithmic derivative 57, 58
reciprocal 48

H

hyperbolic functions iv, 10

J

Jacobi elliptic function 160, 163,
165

complex 159
Jacobi elliptic integral

complex 162, 164

K

Kelvin function
first kind

order one 128
order zero 121, 122

second kind
order one 130
order zero 123, 124

Kolmogorov-Smirnov goodness of
fit D-test statistic 184

IMSL MATH/LIBRARY Special Functions Index • iii

L

logarithmic integrals 31
logarithms

complex 65
common 6
natural 7, 51

for gamma functions 49, 51, 52,
natural 6, 64

M

machine dependent constants 239
Mathieu functions 217

even 220
integer order 220, 223
odd 223
periodic 217, 220, 223
real 220, 223

N

naming conventions v
NaN 240, 241

O

orthogonal series 230
overflow vi,

P

Pochhammer’s symbol 59, 61, 227
printing results vii
probability density function (PDF)

170
probability distribution functions

167
inverses 167

probability functions 169
binomial 173
hypergeometric 177
Poisson 180

R

reserved names 243

S

sine
arc

hyperbolic 22
complex

arc 15
hyperbolic 19

hyperbolic
complex arc 22

in degrees 13
integrals 33

hyperbolic 36
single precision iii
Spence’s integral 229

T

tangent
arc

hyperbolic 24
complex 10

arc 17
arc of a ratio 18
hyperbolic 20

hyperbolic
complex arc 25

Taylor series 227
trigonometric functions iv, 9

U

underflow vi
user interface iii

W

Weierstrass’ function
equianharmonic case 156, 157
lemniscatic case 154, 155

work arrays vii
workspace allocation 237

	Math/Library - SFUN
	Quick Tips
	Copyright
	Revision History
	Contents
	Introduction
	Chapter 1: Elementary Functions
	Chapter 2: Trigonometric and Hyperbolic Functions
	Chapter 3: Exponential Intergrals and Related Functions
	Chapter 4: Gamma Function and Related Functions
	Chapter 5: Error Function and Related Functions
	Chapter 6: Bessel Functions
	Chapter 7: Kelvin Functions
	Chapter 8: Airy Functions
	Chapter 9: Elliptic Intergrals
	Chapter 10: Elliptic and Related Functions
	Chapter 11: Probability Distribution Functions and Inverses
	Chapter 12: Mathieu Functions
	Chapter 13: Miscellaneous Functions
	Reference Material
	Appendix A: GAMS Index
	Appendix B: Alphabetical Summary of Routines
	Appendix C: References
	Product Support
	Index

