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Introduction

The IMSL Libraries

The IMSL Libraries consist of two separate, but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

*  MATH/LIBRARY genera applied mathematics and special functions
* STAT/LIBRARY datistics

The IMSL MATH/LIBRARY User’'s Manulbs two parts;: MATH/LIBRARY and
MATH/LIBRARY Specia Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from persona computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the Ié&&rand, occasionally,BC.”

Getting Started

IMSL MATH/LIBRARY Special Functions is a collection of FORTRAN
subroutines and functions useful in research and statistical analysis. Each routine
is designed and documented to be used in research activities as well as by
technical specialists.

To use any of these routines, you must write a program in FORTRAN (or
possibly some other language) to call the MATH/LIBRARY Special Functions
routine. Each routine conforms to established conventions in programming and
documentation. We give first priority in development to efficient algorithms,
clear documentation, and accurate results. The uniform design of the routines
makes it easy to use more than one routine in a given application. Also, you will
find that the design consistency enables you to apply your experience with one
MATH/LIBRARY Special Functions routine to all other IMSL routines that you
use.

IMSL MATH/LIBRARY Special Functions Introduction « iii



Finding the Right Routine

The organization of IMSL MATH/LIBRARY Special Functions closely parallels

that of the National Bureau of StandarHisindbook of Mathematical Functions,

edited by Abramowitz and Stegun (1964). Corresponding to the NBS Handbook,
functions are arranged into separate chapters, such as elementary functions,
trigonometric and hyperbolic functions, exponential integrals, gamma function
and related functions, and Bessel functions. To locate the right routine for a given
problem, you may use either the table of contents located in each chapter
introduction, or one of the indexes at the end of this manual. GAMS index uses
GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and J.L.
Springmann 199@Guide to Available Mathematical Software, National Institute

of Standards and Technology NISTIR 90-4237). Use the GAMS index to locate
which MATH/LIBRARY Special Functions routines pertain to a particular topic
or problem.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. You
will find all information pertaining to IMSL MATH/LIBRARY Special Functions

in this manual. Moreover, all information pertaining to a particular routine is in
one place within a chapter. Each chapter begins with a table of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information.

IMSL Routine Name

Purpose: a statement of the purpose of the routine

Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:

—CALL sub(ar gunent - I i st) for subroutines

—fun(argument - 1 i st) for functions

Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

iv ¢ Introduction
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Output Noinitialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

* Remarks: details pertaining to code usage and workspace allocation

e Algorithm: a description of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

*  Programming notes: an optional section that contains programming details not
covered elsewhere

« Example at least one application of this routine showing input and required
dimension and type statements

e Output: results from the example(s)
«  References:. periodicals and books with details of algorithm development

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available

in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins

with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a lettelS” or “A” is used as a prefix. Where possible, we use the letter
“C’ as a prefix to denote a routine that returns (or accepts) arguments of complex
type and the lettersz” or “DC’ for double complex type. For example, the
following pairs are names of routines in the two different precisERISDERF

(the root isERF, for “error function”), ANORDF/DNORDF (the root iSNORDF, for

“normal distribution function”), andKERO/DKERO (the root iSKERO, which is the
designation of the modified Kelvin function of order 0). The use of the prefix “

is illustrated byCweL/zWpL (the root iswPL, for “Wierstrass P-function,

lemniscatic case”).

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the lettalsdugh

“N" is of typel NTEGER, and otherwise is of ty@REAL or DOUBLE PRECI S| ON,
depending on the precision of the routine.

When writing programs accessing IMSL MATH/LIBRARY Special Functions,
the user should choose FORTRAN names that do not conflict with names of
IMSL subroutines, functions, or named common blocks. The careful user can
avoid any conflicts with IMSL names if, in choosing names, the following rules
are observed:

« Do not choose a name that appears in the Alphabetical Summary of Routines, at
the end of théJser's Manual

IMSL MATH/LIBRARY Special Functions Introduction « v



* Do not choose a name consisting of more than three characters with anumeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions

In general, the IMSL MATH/LIBRARY Special Functions codes are written so
that computations are not affected by underflow, provided the system (hardware
or software) places a zero value in the register. In this case, system error
messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

The routines in IMSL MATH/LIBRARY Special Functions make use of only a

few machine constants at run time to initialize various parameters to the particular
machine on which they are executing. These machine constants, the most
important of which are two machine epsilons and the smallest and largest
machine-representable positive numbers, are obtained from three machine-
constants routines that have been tailored specifically to the environment in which
MATH/LIBRARY Special Functions is being used. Because you may wish to use
these routines in your own applications, they are fully discussed in the Reference
Material. IMSL MATH/LIBRARY Special Functions does not contain any of the
intrinsic functions that are defined to be part of the FORTRAN 77 standard

(1978, American National Standard Programming Language FORTRAN,
published by American National Standards Institute, New York). Certain local
implementations of the FORTRAN compiler may include intrinsic functions in
addition to those in the ANSI standard that may also be in MATH/LIBRARY
Special Functions. You can check your compiler manual and the table of contents
to see if there are any other routines in common.

vi * Introduction IMSL MATH/LIBRARY Special Functions



Error Handling

Theroutinesin IMSL MATH/LIBRARY Special Functions attempt to detect and

report errors and invalid input. Errors are classified and are assigned a code

number. By default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause

program execution to stop. The severity level aswell asthe general nature of the

error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.

Work Arrays

A few routines in the IMSL MATH/LIBRARY Special Functions require work
arrays. On most systems, the workspace allocation is handled transparently, but
on some systems, workspace is obtained from a large arragoivMan block.

On these systems, when you have a very large problem, the default workspace
may be too small. The routine will print a message telling you the statements to
insert in your program in order to provide the needed space (using the common
block WORKSP for integer or real numbers, or the common blok&PCH for
characters). The routine will then automatically halt execution. See “Automatic
Workspace Allocation” in the Reference Material for details on common block
names and default sizes. For each routine that uses workspace, a second routine is
available that allows you to provide the workspace explicitly. For example, the
routineBSJS (page 103) uses workspace and automatically allocates the required
amount, if available. The routirg2JS does the same 8SJS but has a work

array in its argument list, which the user must declare to be of appropriate size.
The “Automatic Workspace Allocation” section in the Reference Material
contains further details on this subject.

Printing Results

None of the routines in IMSL MATH/LIBRARY Special Functions print results
(but error messages may be printed). The output is returned in FORTRAN
variables, and you can print these yourself.

The IMSL routineUVACH (page 242) retrieves the FORTRAN device unit number
for printing. Because this routine obtains device unit numbers, it can be used to
redirect the input or output. The section on “Machine-Dependent Constants” in
the Reference Material contains a description of the rouNAEH.

IMSL MATH/LIBRARY Special Functions Introduction e vii



Chapter 1: Elementary Functions

Routines
Evaluate the argument of a complex number ....................... CARG 1
Evaluate the cube root of a real nUMber /X .........covcvvvvrveven, CBRT 2
Evaluate the cube root of a complex number S CCBRT 3
Evaluate (6" — 1)/XfOr real X ......ccccvvveeeeeeeeeeeeeeceeeeene, EXPRL 4
Evaluate (€° — 1)/Zfor COMPIEX Z....coveveeeieeeecreiee e CEXPRL 5
Evaluate the complex base 10 logarithm, 109,y Z.....cvvvveee. CLOG10 6
Evaluate In(x + 1) for real X......cccccooviiiiiiiiiieiiiiiiieeee e ALNREL 6
Evaluate In(z + 1) for complex Z........ccooooiieiiiiiiiinieeeees CLNREL 7

Usage Notes

The “relative” functiors EXPRL (page 4) ad CEXPRL (page 5) are useful for

accurately computme™ — 1 nea x = 0. Computing™ — 1 usingexP(X) — 1 near
x =0 is subject to large cancellation errors.
Similarly, ALNREL (page 6) ard CLNREL (page 7) can be used to accurately

compute Ing + 1) neax = 0. Using the routineLOGto compute In{ + 1) near
x =0 is subject to large cancellation errors in the computatiorn-of.1

CARG/ZARG (Single/Double precision)

Evaluate the argument of a complex number.

Usage
CARG 2)

Arguments

Z — Complex number for which the argument is to be evaluated. (Input)

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions « 1



CARG — Function value. (Output)
If z=x+1iy, then arctarny(x) is returned except when botlandy are zero. In this
case, zero is returned.

Algorithm
Arg(2) is the angl® in the polar representatiar | e'’, where
I =+-1

If z=x +iy, then® = tari" (y/x) except when botk andy are zero. In this cas8,
is defined to be zero.

Example
In this example, Arg(1 #) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL CARG, VALUE
COVPLEX Z
EXTERNAL CARG, UMNACH
C Conput e
z = (1.0, 1.0)
VALUE = CARE 2)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT ( CARG(, F6.3,",, F6.3,") =, F6.3)
END

Output
CARG( 1.000, 1.000) = 0.785

CBRT/DCBRT (Single/Double precision)

Evaluate the cube root.

Usage
CBRT(X)

Arguments
X — Argument for which the cuberoot isdesired. (Input)
CBRT — Function value. (Output)

Algorithm

The functionCBRT(X) evaluatex' . All arguments are legal.

2« Chapter 1: Elementary Functions IMSL MATH/LIBRARY Special Functions



Example
In this example, the cube root of 3.45 is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL CBRT, VALUE, X
EXTERNAL CBRT, UMACH
C Conput e
X = 3.45
VALUE = CBRT( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' CBRT(, F6.3,") =, F6.3)

END

Output

CBRT(3.450) = 1.511

CCBRT/ZCBRT (Single/Double precision)

C
| NTEGER
COWPLEX
EXTERNAL
C

Evaluate the complex cube root.

Usage
CCBRT(2)

Arguments
Z — Complex argument for which the cube root is desired. (Input)

CCBRT — Complex function value. (Output)

Comments

The branch cut for the cube root is taken along the negative real axis. The
argument of the result, therefore, is greater thd8 and less than or equal to
173. The other two roots are obtained by rotating the principal ro@tis/and
T03.

Algorithm

The functionCCBRT(2) evaluateg”. The valueZ must not overflow.

Example

In this example, the cube root of —3 + 0.0DiB6computed and printed.

Decl are vari abl es
NOUT
CCBRT, VALUE, Z
CCBRT, UVACH

Comput e

IMSL MATH/LIBRARY Special Functions Chapter 1: Elementary Functions « 3



z
VALUE

= (-3.0, 0.0076)
= CCBRT(2)
c

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) Z, VALUE

Print the results

99999 FORMAT (' CCBRT((, F7.4,",, F7.4,")) = (,

& F6.3," F6.3,)
END

Output
CCBRT((-3.0000, 0.0076)) = ( 0.722, 1.248)

EXPRL/DEXPRL (Single/Double precision)

Evaluate the exponential function factored from first order, (EXR(X) — 1.0)K.

Usage
EXPRL( X)

Arguments

X — Argument for which the function value is desired.

(Input)

EXPRL — Function value. (Output)

Algorithm

The functionEXPRL(X)

Example

evaluatesd’ — 1)k. It will overflow if " overflows.

In this exampleEXPRL(0.184) is computed and printed.

C
INTEGER  NOUT
REAL EXPRL, VALUE, X
EXTERNAL  EXPRL, UVACH
C
X = 0.184
VALUE = EXPRL(X)
C

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( EXPRL(, F6.3,") =, F6.3)
END

Output
EXPRL(0.184) = 1.098

Decl are vari abl es

Conput e

Print the results

4+ Chapter 1: Elementary Functions
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CEXPRL

Evaluate the complex exponential function factored from first order.

Usage

CEXPRL( Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)
CEXPRL — Function value. (Output)

Comments
Informational error
Type Code
3 2 Result ofEXPRL(Z) is accurate to less than one-half precision
because the complex argument is too close to a nonzero integer
multiple of 2.
Algorithm

The functionCEXPRL (Z) evaluatesd” — 1)iz. The argumer must not be so close
to a multiple of 2i that substantial significance is lost due to cancellation. Also,
the result must not overflow aridzl must not be so large that the trigonometric
functions are inaccurate.

Example

In this exampleCEXPRL(0.0076) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CEXPRL, VALUE, Z
EXTERNAL CEXPRL, UNMACH
C Comput e
Z (0.0, 0.0076)
VALUE = CEXPRL(Z2)
C Print the results
CALL UMACH (2, NaQUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CEXPRL((, F7.4,"',), F7.4,") =,
& F6.3,")F6.3,7))
END

Output
CEXPRL(( 0.0000, 0.0076)) = ( 1.000, 0.004)
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CLOG10/ZLOG10 (Single/Double precision)

Evaluate the principal value of the complex common logarithm.

Usage
CLOGL0( 2)

Arguments
Z — Complex argument for which the function value is desired. (Input)
CLOG10 — Complex function value. (Output)

Algorithm

The functionCLOGL0(Z) evaluates log(2) . The argument must not be zero, and
[ must not overflow.

Example

In this example, the l9g(0.0076) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CLOG10, VALUE, Z
EXTERNAL CLOG10, UNMACH
C Comput e
Z (0.0, 0.0076)
VALUE = CLOGL0(2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CLOG10((, F7.4,",F7.4,") = (,
& F6.3,")F6.3,7))
END

Output
CLOG10(( 0.0000, 0.0076)) = (-2.119, 0.682)

ALNREL/DLNREL (Single/Double precision)

Evaluate the natural logarithm of one plus the argument.

Usage
ALNREL(X)

Arguments

X — Argument for the function. (Input)
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C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

ALNREL — Function value. (Output)

Comments
1. Informational error
Type Code
3 2 Result oALNREL (X) is accurate to less than one-half
precision becauseis too near —1.0.
2. ALNREL evaluates the natural logarithm of (Xaccurate in the sense

of relative error even whexis very small. This routine (as opposed to
the intrinsicALOG) should be used to maintain relative accuracy
whenevelX is small and accurately known.

Algorithm

The functionALNREL (X) evaluates In(1 %) for x > —1. The argumentmust be
greater than —1.0 to avoid evaluating the logarithm of zero or a negative number.
In addition,x must not be so close to —1.0 that considerable significance is lost in
evaluating 1 .

Example

In this example, In(1.189) ALNREL(0.189) is computed and printed.
Decl are vari abl es

NOUT
ALNREL, VALUE, X
ALNREL, UMACH
Comput e
0. 189
ALNREL ( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' ALNREL(, F6.3,") =, F6.3)

END

Output

ALNREL( 0.189) = 0.173

CLNREL

Evaluate the principal value of the complex natural logarithm of one plus the
argument.

Usage
CLNREL(2)
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Arguments

Z — Complex argument for which the complex natural logarithm of is+
desired. (Input)

CLNREL — The complex natural logarithm of (1z)} accurate in the sense of
relative error even whenis small. (Output)
Comments

Informational error
Type Code
3 2 Result ofLNREL(Z) is accurate to less than one-half precision
because is too near —1.0.

Algorithm

The functionCLNREL (Z) evaluates In(1 #). The argument must not be so close
to —1 that considerable significance is lost in evaluating.1ft is, a
recoverable error is issued; however, -1 is a fatal error because In(X)ts
infinite. Finally, ¥ must not overflow.

Letp =, z=x+iyandr’ = |1 +z = (L +X)*+y* = 1 + X + p*. Now, ifp is
small, we may evaluat& NREL(Z) accurately by

log(1+2 = logr +iArg(z+ 1)
1/2 logr® + iArg(z + 1)

1/2ALNREL (2 + p*) +iCARG(1 +2)

Example

In this example, In(0.0076= CLNREL(—1 + 0.0076) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CLNREL, VALUE, Z
EXTERNAL CLNREL, UMACH
C Comput e
Z (-1.0, 0.0076)
VALUE = CLNREL(Z2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CLNREL((, F6.4,", F6.4,") =(,
& F6.4,"F6.4,")
END

Output
CLNREL((-1.000, .0076)) = (-4.880, 1.571)
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Chapter 2: Trigonometric and
Hyperbolic Functions

Routines

2.1 Trigonometric Functions
Evaluate tan z for COMpIex Z........ccccoveivnrnrnimmniiiiiiininnnns CTAN 10
Evaluate cot X for real X .......cccceveeeiiiiiiiiii e COoT 11
Evaluate cot Zfor COMPIEX Z......ccccuvurnrmiiiiiiiiiiiiaenens CCOT 12
Evaluate sin x for x a real angle in degrees..........cccccceeunnn. SINDG 13
Evaluate cos x for x a real angle in degrees...........ccceeenn.n. COSDG 14
Evaluate sin” z for COMPIEX Zeeiiiiiiiiiiiiieeie e CASIN 15
Evaluate cos™ zfor (o101 101 0] =) QAR CACOS 16
Evaluate tan™ z for COMPIEX Zeoiiiiiiiiieeee e CATAN 17
Evaluate tan™ (xly) for xand y compleX............ccceeeeeeen. CATAN2 18

2.2 Hyperbolic Functions
Evaluate sinh Zfor COMPpIex Z.......cccooiiiiiiiiiiiiiis CSINH 19
Evaluate cosh z for complex Z.........cccccvvvvvmvmieninniminnninnnnnnn. CCOSH 20
Evaluate tanh z for complex Z..........cccccvvvvvmviviniiiininininnnnnnn. CTANH 20

2.3 Inverse Hyperbolic Functions
Evaluate SiNh™ X fOr €A1 X..vv.veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereneeen ASINH 21
Evaluate Sinh™ Zfor COMPIEX Z......vveveeeeeeeeeeeeeeeesens CASINH 22
Evaluate CoSh™ X fOr 1Al X...v.vvvveeeeeeereeeeeeeeeeeeeeeeeeeeeeerenenes ACOSH 23
Evaluate cosh™ z for (o101 101 0] =) Q4 CACOSH 24
Evaluate tanh™ X fOr r€al Xev..ovveeeeeereeeeeeeeeeeeeeeeeeereneen. ATANH 24
Evaluate tanh™ Zfor COMPIEX Z.....ovveveeeeereeeeeeereseeen, CATANH 25
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Usage Notes

The complex inverse trigonometric hyperbolic functions are single-valued and
regular in adlit complex plane. The branch cuts are shown below for z=x + iy,
i.e., x=0zandy= Ozaretherea and imaginary parts of z, respectively.

sin"'z cos'zand tanh™ (2) tan'zand sinh™'z
y

+1

cosh™'z

Branch Cuts for Inverse Trigonometric and Hyperbolic Functions

CTAN/ZTAN (Single/Double precision)

Evaluate the complex tangent.

Usage
CTAN( 2)

Arguments

Z — Complex number representing the angle in radians for which the tangent is
desired. (Input)

CTAN — Complex function value. (Output)

Comments
Informational error
Type Code
3 2 Result o€TAN(Z) is accurate to less than one-half precision

because the real part ofs too neanv2 or 372 when the
imaginary part o is near zero or because the absolute value of
the real part is very large and the absolute value of the
imaginary part is small.
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Algorithm

Let z=x+iy. If |cos z|2 isvery small, that is, if xisvery close to 72 or 3172 and
if yissmall, then tan zis nearly singular and afatal error condition is reported. If

[cos z|2 is somewhat larger but still small, then the result will be less accurate than
half precision. When 2x is so large that sin 2x cannot be evaluated to any nonzero
precision, the following situation results. If ly| < 3/2, then CTAN cannot be
evaluated accurately to better than one significant figure. If 3/2< |y| < -1/2In /2,
then CTAN can be evaluated by ignoring the real part of the argument; however,
the answer will be less accurate than half precision. Here, € = AMACH(4) isthe
machine precision.

Example

In this example, tan(1 + i) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CTAN, VALUE, Z
EXTERNAL CTAN, UNACH
C Conput e
Z (1.0, 1.0)
VALUE = CTAN(Z)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CTAN((, F6.3,",, F6.3, ")) = (,
& F6.3,"),F6.3,7))
END

Output
CTAN(( 1.000, 1.000)) = ( 0.272, 1.084)

COT/DCOT (Single/Double precision)

Evaluate the cotangent.
Usage

COT(X)
Arguments

X — Angle in radians for which the cotangent is desired. (Input)
COT — Function value. (Output)

Comments
1. Informational error
Type Code
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Cc

COT( 0.300) = 3.233

| NTEGER

REAL

EXTERNAL

X
VALUE

3 2 Result of COT(X) is accurate to less than one-half
precision because ABS(X) istoo large, or Xisnearly a
multiple of Tt

2. Referencing COT(X) is NOT the same as computing 1.0/TAN(X) because
the error conditions are quite different. For example, when Xis near 172,
TAN(X) cannot be evaluated accurately and an error message must be
issued. However, COT(X) can be evaluated accurately in the sense of
absolute error.

Algorithm

The magnitude of x must not be so large that most of the computer word contains
theinteger part of x. Likewise, x must not be too near an integer multiple of T,
although x close to the origin causes no accuracy loss. Finally, x must not be so
close to the origin that COT(X) = 1/x overflows.

Example

In this example, cot(0.3) is computed and printed.

Decl are vari abl es
NOUT
COT, VALUE, X
COT, UMACH

Conput e

0.3
COT( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' COT(, F6.3,") =, F6.3)

END

Output

CCOT/ZCOT (Single/Double precision)

Evaluate the complex cotangent.

Usage
CCOT(2)

Arguments

Z — Complex number representing the angle in radians for which the cotangent
is desired. (Input)

CCOT — Complex function value. (Output)
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Comments

Informational error

Type Code
3 2 Result of CCOT(Z) is accurate to |less than one-half precision
because the real part of Z istoo near amultiple of Ttwhen the
imaginary part of Z is near zero, or because the absolute value
of thereal part is very large and the absolute value of the
imaginary part is small
Algorithm

Letz=x+iy. If |sin z|2 isvery small, that is, if xis very close to amultiple of Tt
and if ly| is small, then cot zis nearly singular and afatal error condition is

reported. If [sin zf* is somewhat larger but still small, then the result will be less
accurate than half precision. When |2x| is so large that sin 2x cannot be eval uated
accurately to even zero precision, the following situation results. If Jy| < 3/2, then
CCOT cannot be evaluated accurately to be better than one significant figure. If
3/2 < ly| < -1/21n &/2, where € = AVACH(4) is the machine precision, then CCOT
can be evaluated by ignoring the real part of the argument; however, the answer
will be less accurate than half precision. Finally, |zl must not be so small that cot z
= l/z overflows.

Example

In this example, cot(1 + i) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CCOrT, VALUE, Z
EXTERNAL CCOT, UNACH
C Comput e
Z (1.0, 1.0)
VALUE = CCOT(2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CCOT((’, F6.3,",, F6.3, ")) = (,
& F6.3,"),F6.3,7)
END

Output
CCOT(( 1.000, 1.000)) = ( 0.218,-0.868)

SINDG/DSINDG (Single/Double precision)

Evaluate the sine for the argument in degrees.

Usage
SINDG(X)
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Arguments
X — Argument in degrees for which the sine is desired. (Input)
SINDG — Function value. (Output)

Algorithm

To avoid unduly inaccurate results, the magnituderofist not be so large that

the integer part fills more than the computer word. Under no circumstances is the
magnitude ok allowed to be larger than the largest representable integer because
complete loss of accuracy occurs in this case.

Example
In this example, sin £45s computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL SI NDG, VALUE, X
EXTERNAL SI NDG, UVACH
C Conput e
X = 45.0
VALUE = SI NDE X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' SIN(, F6.3,  deg) =, F6.3)
END

Output
SIN(45.000 deg) = 0.707

COSDG/DCOSDG (Single/Double precision)

Evaluate the cosine for the argument in degrees.

Usage
COSDG(X)

Arguments
X — Argument in degrees for which the cosine is desired. (Input)
COSDG — Function value. (Output)

Algorithm

To avoid unduly inaccurate results, the magnitude of x must not be so large that
the integer part fills more than the computer word. Under no circumstancesis the
magnitude of x allowed to be larger than the largest representable integer because
complete loss of accuracy occursin this case.
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Cc

| NTEGER

REAL

EXTERNAL

X
VALUE

Example

In this example, cos 100° computed and printed.

Decl are vari abl es
NOUT
COsDG, VALUE, X
COsSDG, UVMACH

Conput e

100.0
COSDG( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' COS(, F6.2," deg) =, F6.3)

END

Output

COS(100.00 deg) = -0.174

CASIN/ZASIN (Single/Double precision)

Evaluate the complex arc sine.

Usage
CASIN(ZINP)

Arguments

ZINP — Complex argument for which the arc sine is desired. (Input)

CASIN — Complex function value in units of radians and the real part in the first
or fourth quadrant. (Output)

Algorithm

Almost all arguments are legal. Only whare|b/2 can an overflow occur. Here,
b = AMACH(2) is the largest floating point number. This error is not detected by
CASI N.

See Pennisi (1963, page 126) for reference.
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C
| NTEGER
COVPLEX
EXTERNAL
C
Z =
VALUE =
C

Example

In this example, sin” (1 1) iscomputed and printed.

Decl are vari abl es
NOUT
CASIN, VALUE, Z
CASI N, UVACH

Conput e

(1.0, -1.0)
CASI N( 2)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CASIN((, F6.3, ", F6.3,") = (,
& F6.3,’), F6.3,))

END

Output

CASIN(( 1.000,-1.000)) = ( 0.666,-1.061)

CACOS/ZACOS (Single/Double precision)

C
| NTEGER
COMPLEX
EXTERNAL
C
Z =
VALUE =
C

Evaluate the complex arc cosine.

Usage
CACOS(2)

Arguments
Z — Complex argument for which the arc cosine is desired. (Input)

CACOS — Complex function value in units of radians with the real part in the
first or second quadrant. (Output)

Algorithm

Almost all arguments are legal. Only whare|b/2 can an overflow occur. Here,
b = AMACH(2) is the largest floating point number. This error is not detected by
CACCS.

Example

In this example, cG’s(l —1i) is computed and printed.

Decl are vari abl es
NOUT
CACCs, VALUE, Z
CACCs, UVACH

Comput e

(1.0, -1.0)
CACOS( 2)

Print the results
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CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CACOS((’, F6.3, ", F6.3, ") = (,
& F6.3,' ' F6.3,")

END

Output

CACOS(( 1.000,-1.000)) = ( 0.905, 1.061)

CATAN/ZATAN (Single/Double precision)

C

| NTEGER
COWPLEX
EXTERNAL

z
VALUE

Evaluate the complex arc tangent.

Usage
CATAN(Z)

Arguments
Z — Complex argument for which the arc tangent is desired. (Input)

CATAN — Complex function value in units of radians with the real part in the
first or fourth quadrant. (Output)

Comments
Informational error
Type Code
3 2 Result ofATAN(Z) is accurate to less than one-half precision

becausezlzl is too close te-1.0.

Algorithm

The argument must not be exactly i, because tahzis undefined there. In
addition,z must not be so close #oi that substantial significance is lost.

Example

In this example, téh(0.0l— 0.01) is computed and printed.

Decl are vari abl es
NOUT
CATAN, VALUE, Z
CATAN, UVACH
Comput e
(0.01, 0.01)
CATAN( 2)
Print the results

CALL UMACH (2, NOUT)

VRl TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CATAN((, F6.3,",, F6.3, ) = (,
& F6.3,"),F6.3,))
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END

Output

CATAN(( 0.010, 0.010)) = ( 0.010, 0.010)

CATAN2/ZATANZ (Single/Double precision)

C
| NTEGER
COVPLEX
EXTERNAL
C
X =
Y =
VALUE =
C

Evaluate the complex arc tangent of aratio.

Usage
CATAN2( CSN, CCS)

Arguments

CSN — Complex numerator of the ratio for which the arc tangent is desired.
(Input)
CCS — Complex denominator of the ratio. (Input)

CATANZ2 — Complex function value in units of radians with the real part
between-tandrm. (Output)

Comments

The result is returned in the correct quadrant (modnjo 2

Algorithm

Letz =CSNandz, = CCS. The ratioz = z/z, must not bet i because ta’h(i i)is
undefined. Likewisez; andz, should not both be zero. Finalmust not be so
close toti that substantial accuracy loss occurs.

Example

In this example,

L (1/2)+(i12)
2+i

tan

is computed and printed.

Decl are vari abl es
NOUT
CATAN2, VALUE, X, Y
CATAN2, UMACH

Conput e

(2.0, 1.0)
(0.5, 0.5)
CATAN2( Y, X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Y, X, VALUE
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99999 FORMAT (' CATAN2((, F6.3, "/, F6.3,"), (, F6.3, "/, F6.3,
& ) =(, F6.3, F6.3,))
END

Output
CATAN2(( 0.500, 0.500), ( 2.000, 1.000)) = ( 0.294, 0.092)

CSINH/ZSINH (Single/Double precision)

Evaluate the complex hyperbolic sine.

Usage
CSINH(Z)

Arguments

Z — Complex number representing the angle in radians for which the complex
hyperbolic sine is desired. (Input)

CSINH — Complex function value. (Output)

Algorithm

The argument must satisfy
04<1/e

whereg = AMACH(4) is the machine precision ahiz is the imaginary part af

Example

In this example, sinh(51) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CSINH, VALUE, Z
EXTERNAL CSI NH, UMACH
C Comput e
Z (5.0, -1.0)
VALUE = CSI NH(2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (" CSINH((, F6.3,",", F6.3, ") = (,
& F7.3,',F7.3,7)
END

Output
CSINH(( 5.000,-1.000)) = ( 40.092,-62.446)
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CCOSH/ZCOSH (Single/Double precision)

Evaluate the complex hyperbolic cosine.

Usage
CCOsH( 2)

Arguments

Z — Complex number representing the angle in radians for which the hyperbolic
cosine is desired. (Input)

CCOSH — Complex function value. (Output)

Algorithm
Let € = AMACH(4) be the machine precision. [ is larger than

1/ e

then the result will be less than half precision, and a recoverable error condition is
reported. If [0z is larger than %/ the result has no precision and a fatal error is
reported. Finally, if(lZ is too large, the result overflows and a fatal error results.
Here,0z andOz represent the real and imaginary parts, oéspectively.

Example

In this example, cosh® + 2) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CCCSH, VALUE, Z
EXTERNAL CCCOSH, UVACH
C Conput e
(-2.0, 2.0
CCOsH( 2)
C Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) Z, VALUE
99999 FORMAT (' CCOSH((', F6.3, "), F6.3, ") = (,
& F6.3,",F6.3,7)
END

Output
CCOSH((-2.000, 2.000)) = (-1.566,-3.298)

CTANH/ZTANH (Single/Double precision)

Evaluate the complex hyperbolic tangent.
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C

Usage
CTANH( 2)

Arguments

Z — Complex number representing the angle in radians for which the hyperbolic
tangent is desired. (Input)

CTANH — Complex function value. (Output)

Algorithm

Letz=x +iy. If |coshzf is very small, that is, if mod 2tis very close tav2 or
3172 and ifx is small, then tanhis nearly singular; a fatal error condition is

reported. If |cos|z|2 is somewhat larger but still small, then the result will be less
accurate than half precision. When(2 = x +iy) is so large that sinyZannot be
evaluated accurately to even zero precision, the following situation resuts If |
3/2, thenCTANH cannot be evaluated accurately to better than one significant
figure. If 3/2< ly| < —1/2 In €/2), thenCTANH can be evaluated by ignoring the
imaginary part of the argument; however, the answer will be less accurate than
half precision. Hereg = AVACH(4) is the machine precision.

Example

In this example, tanh(1 i} is computed and printed.

Decl are vari abl es
| NTEGER NOUT
COVPLEX CTANH, VALUE, Z
EXTERNAL CTANH, UVACH

Comput e
Z
VALUE

(1.0, 1.0)
CTANH( 2)

Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) Z, VALUE

99999 FORMAT (' CTANH((, F6.3, ", F6.3, ")) = (,

F6.3,",, F6.3,"))

END

Output

CTANH(( 1.000, 1.000)) = ( 1.084, 0.272)

ASINH/DASINH (Single/Double precision)

Evaluate the arc hyperbolic sine.

Usage
ASINH(X)
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C

C

| NTEGER

REAL

EXTERNAL

X
VALUE

Arguments
X — Argument for which the arc hyperbolic sine is desired. (Input)
ASINH — Function value. (Output)

Algorithm

The functionASI NH(X) computes the inverse hyperbolic sinexoinh’ x.

Example

In this example, sinh(2.0) is computed and printed.

Decl are vari abl es
NOUT
ASI NH, VALUE, X
ASI NH, UMACH

Comput e

2.0
ASI NH( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( ASINH(, F6.3,") =, F6.3)

END

Output

ASINH( 2.000) = 1.444

CASINH/ZASINH (Single/Double precision)

Evaluate the complex arc hyperbolic sine.

Usage

CASINH(2)

Arguments

Z — Complex argument for which the arc hyperbolic sine is desired. (Input)

CASINH — Complex function value. (Output)

Algorithm

Almost all arguments are legal. Only whare[b/2 can an overflow occur, where
b = AMACH(2) is the largest floating point number. This error is not detected by
CASI NH.

Example

In this example, sin‘h(—l +1i) is computed and printed.
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C
| NTEGER
COVPLEX
EXTERNAL
C
Z =
VALUE =
C

Decl are vari abl es
NOUT
CASI NH, VALUE, Z
CASI NH, UMACH

Conput e

(-1.0, 1.0)
CASI NH( 2)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CASINH((’, F6.3, ", F6.3, ") = (,
& F6.3,' ' F6.3,7)

END

Output

CASINH((-1.000, 1.000)) = (-1.061, 0.666)

ACOSH/DACOSH (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

Evaluate the arc hyperbolic cosine.

Usage
ACOSH(X)

Arguments
X — Argument for which the arc hyperbolic cosine is desired. (Input)

ACOSH — Function value. (Output)

Comments

The result oACCSH(X) is returned on the positive branch. Recall that, like
SQRT(X), ACOSH(X) has multiple values.

Algorithm

The functionACOSH(X) computes the inverse hyperbolic cosina,afosh' x.

Example

In this example, cosh(1.4) is computed and printed.

Decl are vari abl es
NOUT
ACOSH, VALUE, X
ACOSH, UMACH

Comput e

1.4
ACOSH( X)

Print the results

CALL UMACH (2, NOUT)
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WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ACOSH(, F6.3,") =, F6.3)
END

Output
ACOSH( 1.400) = 0.867

CACOSH/ZACOSH (Single/Double precision)

Evaluate the complex arc hyperbolic cosine.

Usage
CACOSH(2)

Arguments
Z — Complex argument for which the arc hyperbolic cosine is desired. (Input)
CACOSH — Complex function value. (Output)

Algorithm

Almost all arguments are legal. Only whar|b/2 can an overflow occur, where
b = AMACH(2) is the largest floating point number. This error is not detected by
CACCOSH.

Example

In this example, coé}(l — i) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CACCsSH, VALUE, Z
EXTERNAL CACCsH, UMACH
C Comput e
Z (1.0, -1.0)
VALUE = CACOSH(Z)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CACOSH((, F6.3,",, F6.3, ) = (,
& F6.3,"),F6.3,7))
END

Output
CACOSH(( 1.000,-1.000)) = (-1.061, 0.905)

ATANH/DATANH (Single/Double precision)

Evaluate the arc hyperbolic tangent.
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Usage

ATANH( X)

Arguments

X — Argument for which the arc hyperbolic tangent is desired. (Input)
ATANH — Function value. (Output)

Comments

Informational error
Type Code
3 2 Result oATANH(X) is accurate to less than one-half precision
because the absolute value of the argument is too close to 1.0.

Algorithm

ATANH(X) computes the inverse hyperbolic tangent,dt&nﬁ1 X. The argumernt
must satisfy

X <1-VE

wheree = AMACH(4) is the machine precision. Note thgtrhust not be so close to
one that the result is less accurate than half precision.

Example

In this example, taﬁf‘(—1/4) is computed and printed.
Decl are vari abl es

| NTEGER NOUT

REAL

ATANH, VALUE, X

EXTERNAL  ATANH, UVACH

X

Conput e
= -0.25

VALUE = ATANH( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ATANH(, F6.3,") =, F6.3)

END

Output

ATANH(-0.250) = -0.255

CATANH/ZATANH (Single/Double precision)

Evaluate the complex arc hyperbolic tangent.
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Usage
CATANH( 2)

Arguments
Z — Complex argument for which the arc hyperbolic tangent is desired. (Input)

CATANH — Complex function value. (Output)

Algorithm

The argument must not be exacitlly because tanhz is undefined there. In
addition,z must not be so close #d that substantial significance is lost.

Example

In this example, taﬁh(1/2 +i/2) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CATANH, VALUE, Z
EXTERNAL CATANH, UMACH
C Conput e
Z (0.5, 0.5)
VALUE CATANH( Z2)
C Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) Z, VALUE
99999 FORMAT (" CATANH((, F6.3,",, F6.3,") = (,
& F6.3,",F6.3,7)
END

Output
CATANH(( 0.500, 0.500)) = ( 0.402, 0.554)
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Chapter 3: Exponential Integrals
and Related Functions

Routines

Evaluate the exponential integral, Ei(X)........ccccccvrmimimimiminininininnnnn. El 28
Evaluate the exponential integral, £;(X) .....cccooovemmmmmmmmmnnnnnnnnnnnnns El 29
Evaluate the scaled exponential integrals, integer order,

E(X) ceeeet e ee e e ENE 30
Evaluate the logarithmic integral, li(X) .......cccceeviiiiiiinineniiiine, ALI 31
Evaluate the sine integral, Si(X) ........coooouiiiiiieeniiiie e Sl 33
Evaluate the cosine integral, Ci(X) .....cccoveeeeeiiiiiiiiiieee e Cl 34
Evaluate the cosine integral (alternate definition)...................... CIN 35
Evaluate the hyperbolic sine integral, Shi(X) ........cccccooeiiiinnnnnnns SHI 36
Evaluate the hyperbolic cosine integral, Chi(X) ..........cccceeeiunnnnns CHI 37
Evaluate the hyperbolic cosine integral (alternate definition).. CINH 38

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).

Thefollowing is aplot of the exponential integral functions that can be computed
by the routines described in this chapter.
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Function

["117 E_l L
{Ei —
By —

50;

Figure 3-1 Plot of e'E(x), E, (x) and Ei(x)

EI/DEI (Single/Double precision)

Evaluate the exponential integral for arguments greater than zero and the Cauchy
principal value for arguments less than zero.

Usage

El ( X)

Arguments

X — Argument for which the function value is desired. (Input)

El — Function value. (Output)

Comments

If principal values are used everywhere, then foxal (X) = —-E1(-X) and
E1(X) = —El (-X)

Algorithm

The exponential integral, Ei, is defined to be
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Ei(x) = —]f_°°xe“/t dt forx#0

The argument x must be large enough to insure that the asymptotic formulae®/x
does not underflow, and x must not be so large that €* overflows.

Example
In this example, Ei(1.15) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL El, VALUE, X
EXTERNAL El , UMACH
C Conput e
X =1.15
VALUE = El (X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( EI(, F6.3,") =, F6.3)
END

Output
EI( 1.150) = 2.304

E1/DE1 (Single/Double precision)

Evaluate the exponential integral for arguments greater than zero and the Cauchy
principal value of the integral for arguments |ess than zero.

Usage

E1(X)

Arguments

X — Argument for which the integral is to be evaluated. (Input)

E1 — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becausis too large.
Algorithm

The alternate definition of the exponential integEa(x), is
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E,(X) = j:’ et/tdt forxz0

The path of integration must exclude the origin and not cross the negative real
axis.

The argument x must be large enough that € * does not overflow, and x must be
small enough to insure that € */x does not underflow.

Example

In this example, E, (1.3) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL El, VALUE, X
EXTERNAL E1l, UMACH
C Comput e
X =1.3
VALUE = E1(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( E1(, F6.3,") =", F6.3)
END

Output
E1(1.300) = 0.135

ENE/DENE (Single/Double precision)

Evaluate the exponential integral of integer order for arguments greater than zero
scaled by EXR(X).

Usage
CALL ENE (X, N, F)

Arguments

X — Argument for which the integral is to be evaluated. (Input)
It must be greater than zero.

N — Integer specifying the maximum order for which the exponential integral is
to be calculated. (Input)

F — Vector of lengtiN containing the computed exponential integrals scaled by
EXP(X). (Output)

Algorithm

The scaled exponential integral of oraeE,(x), is defined to be
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En(x) =€ Jlme"‘tt'n dt forx>0

The argument x must satisfy x > 0. The integer n must also be greater than zero.
This codeis based on a code due to Gautschi (1974).

Example

In this example, E,(10) for n =1, ..., niscomputed and printed.

Decl are vari abl es
| NTEGER N
PARAMETER ( N=10)

| NTEGER K, NOUT
REAL F(N), X
EXTERNAL ENE, UVACH
Conput e
X =10.0
CALL ENE (X, N, F)
Print the results
CALL UMACH (2, NaouT)
DO 10 K=1, N
WRI TE (NOUT, 99999) K, X, F(K)

10 CONTI NUE
99999 FORMAT ( Esub ', 12,” (, F6.3,") =, F6.3)
END

E sub
E sub
E sub
E sub
E sub
E sub
E sub
E sub
E sub

Output
1 (10.000) = 0.092
2 (10.000) = 0.084
3(10.000) = 0.078
4 (10.000) = 0.073
5 (10.000) = 0.068
6 (10.000) = 0.064
7 (10.000) = 0.060
8 (10.000) = 0.057
9 (10.000) = 0.054

E sub 10 (10.000) = 0.051

ALI/DLI (Single/Double precision)

Evaluate the logarithmic integral .

Usage
ALI(X)
Arguments

X — Argument for which the logarithmic integral is desired. (Input)
It must be greater than zero and not equal to one.

ALl — Function value. (Output)
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Comments

Informational error

Type Code
3 2 Result of ALI (X) is accurate to less than one-half precision
because X istoo closeto 1.0.
Algorithm
The logarithmic integral, li(x), is defined to be
. x dt
li(x)=—1.— forx>0andx#1
0Int

The argument x must be greater than zero and not equal to one. To avoid an
undue loss of accuracy, x must be different from one at least by the sguare root of
the machine precision.

The function li(x) approximates the function 11(x), the number of primes lessthan
or equal to x. Assuming the Riemann hypothesis (all non-real zeros of {(z) are on
theline 0z = 1/2), then

li(x) — T(X) = O(+/x InX)

180 .
il Function
f li(x) —
: /. n(x) —
150 e
] e
120 3 S
. e
> 90 7
] S
4
30 y.
o s S O B I B B I B B
0 200 400 600 800 1000

Figure 3-2 Plot of li(x) and 1q(x)
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Example
In this example, 1i(2.3) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ALI, VALUE, X
EXTERNAL ALI, UVACH
C Conput e
X = 2.3
VALUE = ALI (X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ALI(, F6.3,") =", F6.3)
END

Output
ALI( 2.300) = 1.439

SI/DSI (Single/Double precision)

Evaluate the sineintegral .

Usage
SI(X)

Arguments
X — Argument for which the function value is desired. (Input)

Sl — Function value. (Output)

Algorithm
The sine integral, Sij, is defined to be

o9 = [, Pt

x| >1/e

the answer is less accurate than half precision, whilg|ferl| £, the answer has
no precision. Hereg = AVACH(4) is the machine precision.

Example
In this example, Si(1.25) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL SI, VALUE, X
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EXTERNAL SI, UVACH

C Conmput e
X 1.25
VALUE = SI (X)

C Print the results
CALL UMACH (2, NaouT)
VWRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' SI(, F6.3,") =", F6.3)

END

Output
SI(1.250) = 1.146

CI/DCI (Single/Double precision)

Evaluate the cosine integral.

Usage
CI(X)
Arguments

X — Argument for which the function valueis desired.  (Input)
It must be greater than zero.

Cl — Function value.  (Output)

Algorithm
The cosine integral, Ci(x), is defined to be
. x 1- cost
ixX)=y+Inx+| —
Ci(x) =y [, ot
wherey= 0.57721566 is Euler’s constant.

The argument must be larger than zero. If

x>1/+/e

then the result will be less accurate than half precision 1k, the result will
have no precision. Here=AVACH(4) is the machine precision.

Example
In this example, Ci(1.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL Cl, VALUE, X
EXTERNAL Cl, UVACH
C Comput e
X = 1.5
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VALUE = O (X)
C Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' CI(, F6.3,") ="', F6.3)
END

Output
CI( 1.500) = 0.470

CIN/DCIN (Single/Double precision)

Evaluate afunction closely related to the cosine integral.

Usage

CIN(X)

Arguments

X — Argument for which the function value is desired. (Input)

CIN — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becausis too small.
Algorithm

The alternate definition of the cosine integral, &€inis
. x 1— cost
Cin(x) = Jo fdt
For
0<|x <+/s

wheres = AVACH(1) is the smallest representable positive number, the result
underflows. For

x| >1/e

the answer is less accurate than half precision, whilg|fer]| £, the answer has
no precision. Hereg = AMACH(4) is the machine precision.

Example

In this example, Cin(@) is computed and printed.
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C Decl are vari abl es
| NTEGER NOUT
REAL CIN, CONST, VALUE, X
EXTERNAL CI' N, CONST, UMACH
C Conput e
X =2.0*CONST(pi’)
VALUE = CIN(X)
C Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' CIN(, F6.3,") =, F6.3)
END

Output
CIN( 6.283) = 2.438

SHI/DSHI (Single/Double precision)

Evaluate the hyperbalic sineintegral.

Usage

SHI(X)

Arguments

X — Argument for which the function value is desired. (Input)

SHI— function value. (Output)

SHI equals
| ;si nh(t) / t dt
Algorithm
The hyperbolic sine integral, Skj( is defined to be
. _ xsinht
Shi(x) = | o O

The argument must be large enough thet/x does not underflow, andmust
be small enough that does not overflow.

Example
In this example, Shi(3.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL SHI, VALUE, X
EXTERNAL SH , UMACH
C Conput e
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X 3.5
VALUE = SHI (X)
C Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' SHI(, F6.3,") =", F6.3)
END

Output
SHI( 3.500) = 6.966

CHI/DCHI (Single/Double precision)

Evaluate the hyperbolic cosine integral.

Usage

CHI(X)

Arguments

X — Argument for which the function value is desired. (Input)

CHI — Function value. (Output)

Comments

WhenX is negative, the principal value is used.

Algorithm
The hyperbolic cosine integral, Ckii( is defined to be

Chi(x) = v+|nx+j;%t‘ldt for x > 0

wherey = 0.57721566 is Euler's constant.

The argument must be large enough the&t/x does not underflow, andmust
be small enough that does not overflow.

Example
In this example, Chi(2.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL CH , VALUE, X
EXTERNAL CH , UMACH
C Conput e
X = 2.5
VALUE = CHI (X)
C Print the results
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CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( CHI(, F6.3, ") =, F6.3)

END

CHI( 2.500) = 3.524

Output

CINH/DCINH (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C

Evaluate afunction closely related to the hyperbolic cosine integral.

Usage

CINH(X)

Arguments

X — Argument for which the function value is desired. (Input)
CINH — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becausis too small.
Algorithm

The alternate definition of the hyperbolic cosine integral, Ginhg
. x cosht -1
Cinh(x) = [ =t
0 t

For
0<|X <25
wheres = AVACH(1) is the smallest representable positive number, the result

underflows. The argumertmust be large enough that’x does not underflow,
andx must be small enough thatdoes not overflow.

Example

In this example, Cinh(2.5) is computed and printed.

Decl are vari abl es
NOUT
CI NH, VALUE, X
CI NH, UVACH

Conput e
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X 2.5
VALUE = CI NH( X)
C Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' CINH(’, F6.3,") =", F6.3)
END

Output
CINH( 2.500) = 2.031
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Chapter 4. Gamma Function
and Related Functions

Routines
4.1 Factorial Function
Evaluate the factorial, n! ..., FAC 42
Evaluate the binomial coefficient, (:J ................................. BINOM 43
4.2 Gamma Function
Evaluate the real gamma function, F(X) ........ccceeevvvveveeeennnns GAMMA 44
Evaluate the complex gamma function, I'(2).................... CGAMMA 46
Evaluate the reciprocal of the real gamma function,
TIT(X) et ee et GAMR 48
Evaluate the reciprocal of the complex gamma function,
I 4 SRS CGAMR 48
Evaluate the real function, In [y(X)|.......cccovvvreeeeiiiiiiiieee, ALNGAM 49
Evaluate the complex function, IN Y(2)......ccccveeeveviivinnnnnn. CLNGAM 51
Evaluate the log abs gamma function and its sign............ ALGAMS 52
4.3. Incomplete Gamma Function
Evaluate the incomplete gamma function, y(a,X) ........cccceeeenne GAMI 53
Evaluate the complementary incomplete gamma function,
5 PO PRT GAMIC 54
Evaluate Tricomi's incomplete gamma function, y*(a, X) ..... GAMIT 55

4.4, Psi Function

Evaluate the real psi function, W(X) ........ccooeviiiieeiiiiieeniieeee PSI 57

Evaluate the complex psi function, W(2)........c.cccccvvvvveeeeeiiinnnen, CPsI 58
4.5, Pochhammer’s Function

Evaluate Pochhammer’s generalized symbol, (&)y................ POCH 59

Evaluate Pochhammer’s symbol starting

from the firSt Order........ccvvvieiiiiii e POCH1 60
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4.6. Beta Function

Evaluate the real beta function, B(a,0)......ccccccvvvvvevivivivieeennnnnn. BETA 62
Evaluate the complex beta function, B(a,b) .......cccccvvvevereenn. CBETA 63
Evaluate the log of the real beta function, In 3(a,b) ............ ALBETA 64
Evaluate the log of the complex beta function, In 3(a,b).... CLBETA 65
Evaluate the incomplete beta function, L(&@,b) ............ccuuue.e. BETAI 66

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).
Thefollowing is atable of the functions defined in this chapter:

FAC n=rn+1

BI NOM n/m(n-m)!,0<m<n

GAMVA r(x)= jg’e‘ttx'ldt, X#0,-1-2, ...

CGAMVA M(2)=Jye 't* dt, x#0,-1,-2,...

GAMR Ur(x)

CGAMR Ur(2

ALNGAM InIFr(x)|, x#0, -1, -2, ...

CLNGAM InT(2,x#0,-1,-2, ...

ALGAMS InF(x)|and sign " (x), x# 0, -1, =2, ...

GAM y(ax)=[yt* e dt,a>0,x=0

GAM C Max) =] t* e dt, x>0

GAM T v*(a, X) = (X “IT(@)y(a, X), x=0

PSI Px) =T')Mrx), xz0, -1, -2, ...

CPSI w@=r'@ar,z0,-1,-2, ...

POCH (@), =T(@a+x/M(a),ifa+x=0,-1,-2, ...
thenamust =0, -1, -2, ...

POCH1L (@), - /ixifa+x=0,-1, -2, ...thenamust =0, -1, -2, ...

BETA B4, %) =T)IF)M (4 +X%), % >0andx, >0

CBETA B(z,2)=T(z)N(z)/IT(z +2),z >0andz,>0

ALBETA InB(a, b),a>0,b>0

CLBETA InB(a, b), Ja>0,0b>0

BETAI I(a b)=B.(a b)/p(ab),0<x<1,a>0b>0

FAC/DFAC (Single/Double precision)

Evaluate the factorial of the argument.

Usage
FAC(N)
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Cc

| NTEGER

REAL

EXTERNAL

N
VALUE

Arguments
N — Argument for which the factorial is desired. (Input)

FAC — Function value. (Output)

Comments

To evaluate the factorial for nonintegral values of the argument, the gamma
function should be used. For large values of the argument, the log gamma
function should be used.

Algorithm

The factorial is computed using the relatior= I'(n + 1). The functior () is
defined inGAMVA on page 45. The argumeniust be greater than or equal to
zero, and it must not be so large thiabverflows. Approximatelyn! overflows

whenn"e " overflows.

Example

In this example, 6! is computed and printed.

Decl are vari abl es
N, NOUT
FAC, VALUE
FAC, UVACH

Conput e

6
FAC(N)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) N, VALUE
99999 FORMAT ( FAC(, I1,") =", F6.2)

END

FAC(6) = 720.00

Output

BINOM/DBINOM (Single/Double precision)

Evaluate the binomial coefficient.

Usage
BINOM(N, M)
Arguments

N — First parameter of the binomial coefficient. (Input)
N must be nonnegative.
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M — Second parameter of the binomial coefficient. (Input)
Mmust be nonnegative and less than or equal to

BINOM — Function value. (Output)

Comments

To evaluate binomial coefficients for nonintegral values of the arguments, the
complete beta function or log beta function should be used.

Algorithm

The binomial function is defined to be

n,) _ n!
(m) ~ mi(n-m)!

with n=m= 0. Also,n must not be so large that the function overflows.

Example

9
In this example(Sj is computed and printed.

C Decl are vari abl es
| NTEGER M N, NOUT
REAL Bl NOM VALUE
EXTERNAL BI NOM UMACH
C Comput e
N =9
M =5
VALUE = BINOMN, M
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) N, M VALUE
99999 FORMAT ( BINOM(, 11, /", I1, ") =, F6.2)
END

Output
BINOM(9,5) = 126.00

GAMMA/DGAMMA (Single/Double precision)

Evaluate the complete gamma function.

Usage
GAMMA(X)
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Arguments
X — Argument for which the complete gamma function is desired. (Input)
GAMMA — Function value. (Output)

Comments
Informational errors
Type Code
2 1 The function underflows becausis too small.
3 2 Result is accurate to less than one-half precision because
too near a negative integer.
Algorithm

The gamma functior,(x), is defined to be
M(x)= Jo t*Tetdt forx>0

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. Also,
the argumernt must be greater thag,;, so that (x) does not underflow, and

must be less thax,,, so thatl (x) does not overflow. The underflow limit occurs

first for arguments that are close to large negative half integers. Even though
other arguments away from these half integers may yield machine-representable
values ofl (x), such arguments are considered illegal. Users who need such values
should use the log gamma functilirNGAM, page 49, oALGAMS, page 52.

Finally, the argument should not be so close to a negative integer that the result is
less accurate than half precision. The limits, andx,,, are available by

CALL RIGAM. (XM N, XMAX)
CALL D9GAML (XM N, XMAX)
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Figure 4-1 Plot of I'(x) and 1/T(x)
Example

In this example, I'(5.0) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL GAMVA, VALUE, X
EXTERNAL GAMMVA, UNVACH
C Comput e
X =50
VALUE = GAMVA( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( GAMMA(, F6.3,") =, F6.3)
END

Output
GAMMA( 5.000) = 24.000

CGAMMA

Evaluate the complex gamma function.
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C

| NTEGER
COWPLEX
EXTERNAL

z
VALUE

Usage
CGAMVA( 2)

Arguments
Z — Complex argument for which the gamma function is desired. (Input)
CGAMMA — Complex function value. (Output)

Comments

This routine simply exponentiates the complex log gamma function.

Algorithm

The gamma function,(2), is defined to be
M(z)= _[:tz‘le‘tdt for 0z>0

For (z) < 0, the above definition is extended by analytic continuation.

zmust not be so close to a negative integer that the result is less accurate than half
precision. IfJ(2) is too small, then the result will underflow. Whe¢z) = 0,

(2) should be greater thag,;,, so that the result does not underflow, aind)

should be less thag,,, so that the result does not overflogy;, andx,,,, are

available by

CALL ROGAM. (XM N, XNAX)

CALL DIGAM. (XM N, XMAX)

Note thatz must not be too far from the real axis because the result will

underflow.

Example

In this examplel (1.4 + 3) is computed and printed.

Decl are vari abl es
NOUT
CGAMMA, VALUE, Z
CGAMVA, UNACH

Comput e

(1.4, 3.0)
CGAMVA( 2)

Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) Z, VALUE
99999 FORMAT ( CGAMMA(, F6.3,",, F6.3,") = (',

F6.3,"., F6.3,"))
END

Output

CGAMMA( 1.400, 3.000) = (-0.001, 0.061)
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GAMR/DGAMR (Single/Double precision)

Evaluate the reciprocal gamma function.

Usage
GAMR( X)

Arguments
X — Argument for which the reciprocal gamma function is desired. (Input)
GAMR — Function value. (Output)

Algorithm

The reciprocal gamma function is defined to He(¥). SeeGAMVA (page 45) for
the definition ofl (x).

The gamma function is not defined for integers less than or equal to zerax Also,
must be larger thax,;, so that 7 (x) does not underflow, andmust be smaller
thanx,,,, So that 17 (x) does not overflow. Symmetric overflow and underflow
limits X.,;, andX,,,x are obtainable from

CALL ROGAML (XM N, XMAX)
CALL D9GAML (XM N, XMAX)

Example
In this example, T/(1.85) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL GAMR, VALUE, X
EXTERNAL GAMR, UVACH
C Comput e
X = 1.85
VALUE = GAMR( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( GAMR(, F6.3,") =", F6.3)
END

Output
GAMR( 1.850) = 1.058

CGAMR

Evaluate the reciprocal complex gamma function.
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Usage
CGAVR( Z)

Arguments

Z — Complex argument for which the reciprocal gamma function is desired.
(Input)
CGAMR — Complex function value. (Output)

Comments

This function is well behaved near zero and negative integers.

Algorithm

The functionCGAMR computes T7(2). SeeCGAMVA (page 47) for the definition of
(2.

ForO(2) = 0,z must be larger thax,;, so that 17 (z) does not underflow, and
must be smaller thag,,, so that 7 (2) does not overflow. Symmetric overflow
and underflow limitx,;, and x.,,, are obtainable from

CALL ROGAML (XM N, XMAX)
CALL D9GAML (XM N, XMAX)

Note thatz must not be too far from the real axis because the result will overflow
there.

Example

In this example, I (1.4 + 3) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CGAMR, VALUE, Z
EXTERNAL CGAMR, UNACH
C Comput e
Z (1.4, 3.0)
VALUE = CGAMR(2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CGAMR(, F6.3,",F6.3,) =(, F7.3,", F7.3,"))
END

Output
CGAMR( 1.400, 3.000) = ( -0.303,-16.367)

ALNGAM/DLNGAM (Single/Double precision)

Evaluate the logarithm of the absolute value of the gamma function.
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Usage

ALNGAM X)

Arguments

X — Argument for which the function value is desired. (Input)
ALNGAM — Function value. (Output)

Comments
Informational error
Type Code
3 2 Result oALNGAMX) is accurate to less than one-half precision
becaus« is too near a negative integer.
Algorithm

The functionALNGAMcomputes Il (X)|. SeeGAMVA (page 45) for the definition
of M (x).

The gamma function is not defined for integers less than or equal to zeroxJAlso, |
must not be so large that the result overflows. Neither skxdugdso close to a
negative integer that the accuracy is worse than half precision.
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Figure 4-2 Plot of log|r (x|
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Example

In this example, In | (1.85)| is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ALNGAM VALUE, X
EXTERNAL ALNGAM UMACH
C Conput e
X = 1.85
VALUE = ALNGAM X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ALNGAM(, F6.3,") =, F6.3)

END

Output

ALNGAM( 1.850) = -0.056

CLNGAM

Evaluate the complex natural logarithm of the gamma function.

Usage
CLNGAM(ZIN)

Arguments

ZIN — Complex argument for which the logarithm of the gamma function is
desired. (Input)

CLNGAM — Complex function value. (Output)

Comments
Informational error
Type Code
3 2 Result oELNGAMZI N) is accurate to less than one-half

precision becaus#l Nis too near a negative integer.

Algorithm

The functionCLNGAMcomputes I (2). SeeCGAMVA (page 47) for the definition
of ['(2).

The argument must not be so large that the result overflows. Neither stzdaéd
so close to a negative integer that the accuracy is worse than half precision.
Example

In this example, I (1.4 + 3) is computed and printed.
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C Decl are vari abl es
| NTEGER NOUT
COVPLEX CLNGAM VALUE, Z
EXTERNAL CLNGAM UMACH
C Conput e
(1.4, 3.0)
CLNGAM 2)
C Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) Z, VALUE
99999 FORMAT (' CLNGAM(, F6.3, ", F6.3,") = (,
& F6.3,",F6.3,7)
END

Output
CLNGAM( 1.400, 3.000) = (-2.795, 1.589)

ALGAMS/DLGAMS (Single/Double precision)

Return the logarithm of the absolute value of the gamma function and the sign of
gamma.

Usage
CALL ALGAMS (X, ALGM, S)

Arguments

X — Argument for which the logarithm of the absolute value of the gamma
function is desired. (Input)

ALGM — Result of the calculation. (Output)

S— Sign of gamma{). (Output)
If gammak) is greater than or equal to ze®+ 1.0. If gammaX) is less than

zero,S =-1.0.
Comments
Informational error
Type Code
3 2 Result oALGAMS is accurate to less than one-half precision

becaus« is too near a negative integer.

Algorithm

The functionALGAMS computes Il (X)| and the sign of (x). SeeGAMVA
(page 44) for the definition df(x).

The result overflows if| is too large. The accuracy is worse than half precision if
X is too close to a negative integer.
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Cc

Example

In this example, In | (1.85)| and the sign of "' (1.85) are computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL VALUE, S, X
EXTERNAL ALGAMS, UMACH
Conput e
X =1.85
CALL ALGAMB(X, VALUE, 9)
Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99998) X, VALUE

99998 FORMAT (' Log Abs(Gamma(, F6.3,")) =, F6.3)

WRITE (NOUT,99999) X, S

99999 FORMAT (' Sign(Gamma(, F6.3, ") =, F6.2)

END

Output

Log Abs(Gamma( 1.850)) = -0.056
Sign(Gamma( 1.850)) = 1.00

GAMI/DGAMI (Single/Double precision)

Evaluate the incomplete gamma function.

Usage
GAMI(A, X)

Arguments

A — The integrand exponent parameter. (Input)
It must be positive.

X — The upper limit of the integral definition GAM . (Input)
It must be nonnegative.

GAMI — Function value. (Output)

Algorithm

The incomplete gamma function is defined to be
X a1 —
y(a,x) = _[0 t*le7'dt fora>0andx=0

The functiony(a, X) is defined only foa greater than zero. Althouga, x) is

well defined forx > —o, this algorithm does not calculag@, x) for negativex.

For largea and sufficiently large, y(a, X) may overflowy(a, x) is bounded by

I'(a), and users may find this bound a useful guide in determining legal values of
a.
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Because logarithmic variables are used, a dlight deterioration of two or three
digits of accuracy will occur when GAM isvery large or very small.

Error! Objects cannot be created from editing field codes.

Figure 4-3 Contour Plot of y(a, x)

Example
In this example, y(2.5, 0.9) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL A, GAM, VALUE, X
EXTERNAL GAM , UVACH
C Conput e
A = 2.5
X =0.9
VALUE = GAM (A, X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT ( GAMI(, F6.3,",, F6.3,") =, F6.4)
END

Output
GAMI( 2.500, 0.900) = 0.1647

GAMIC/DGAMIC (Single/Double precision)

Evaluate the complementary incompl ete gamma function

Usage
GAMIC(A, X)

Arguments

A — The integrand exponent parameter as per the remarks. (Input)

X — The upper limit of the integral definition GAM C. (Input)
If Ais positive, therx must be positive. Otherwisg must be nonnegative.

GAMIC — Function value. (Output)

Comments
Informational error
Type Code
3 2 Result o&AM C(A, X) is accurate to less than one-half precision

becausa is too near a negative integer.
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| NTEGER

REAL

EXTERNAL

A
X
VALUE

Algorithm

The incomplete gamma function is defined to be
Fax) = [Ctalet
(a,x) th e dt

The only general restrictions on a are that it must be positiveif x is zero;
otherwise, it must not be too close to a negative integer such that the accuracy of
the result isless than half precision. Furthermore, I' (a, X) must not be so small
that it underflows, or so large that it overflows. Although " (a, x) iswell defined
for x> —c0 and a > 0, this algorithm does not calculate I' (a, X) for negative x.

The function GAM C is based on a code by Gautschi (1979).

Example

In this example, I'(2.5, 0.9) is computed and printed.
Decl are vari abl es

NOUT
A, GAM C, VALUE, X
GAM C, UNACH
Conput e
5
9
GAM C(A, X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT ( GAMIC(, F6.3,",, F6.3,") =, F6.4)

END

Output

GAMIC( 2.500, 0.900) = 1.1646

GAMIT/DGAMIT (Single/Double precision)

Evaluate the Tricomi form of the incomplete gamma function.

Usage
GAMIT(A, X)

Arguments
A — The integrand exponent parameter as per the comments. (Input)

X — The upper limit of the integral definition GAM T. (Input)
It must be nonnegative.

GAMIT — Function value. (Output)
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C

| NTEGER

REAL

EXTERNAL

A
X
VALUE

Comments

Informational error

Type Code
3 2 Result of GAM T(A, X) is accurate to less than one-half precision
because A istoo close to a negative integer.
Algorithm

The Tricomi’s incomplete gamma function is defined to be

X y(ax) _ x 2 J'oota—le‘tdt
a) ’x

r@ r(

wherey(a, X) is the incomplete gamma function. &8 (page 53) for the
definition ofy(a, X).

y*(ax) =

The only general restriction anis that it must not be too close to a negative
integer such that the accuracy of the result is less than half precision.
FurthermorelyHa, x)| must not underflow or overflow. AlthougHa, x) is well
defined for x >0, this algorithm does not calculate (a, x) for negativex.

A slight deterioration of two or three digits of accuracy will occur wia&m T is

very large or very small in absolute value because logarithmic variables are used.

Also, if the parametea is very close to a negative integer (but not quite a

negative integer), there is a loss of accuracy which is reported if the result is less

than half machine precision.
The functionGAM T is based on a code by Gautschi (1979).

Example

In this exampleyH3.2, 2.1) is computed and printed.
Decl are vari abl es

NoUT
A, GAM T, VALUE, X
GAM T, UMACH
Comput e
3.2
2.1
GAM T(A, X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT (' GAMIT(, F6.3,",, F6.3,") =, F6.4)

END

Output

GAMIT( 3.200, 2.100) = 0.0284
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PSI/DPSI (Single/Double precision)

Evaluate the logarithmic derivative of the gamma function.

Usage

PSI ( X)

Arguments

X — Argument for which the function value is desired. (Input)

PSI — Function value. (Output)

Comments
Informational error
Type Code
3 2 Result oPSI (X) is accurate to less than one-half precision

becaus« is too near a negative integer.

Algorithm
The psi function, also called the digamma function, is defined to be
d '(x)
X) =—Inl(x) =
b0 = g Inr 09 =

SeeGAMVA (page 44) for the definition ¢f(x).

The argument must not be exactly zero or a negative integety(®y is
undefined. Alsox must not be too close to a negative integer such that the
accuracy of the result is less than half precision.

Example

In this example(1.915) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL PSI, VALUE, X
EXTERNAL PSI, UVACH
C Conput e
X = 1.915
VALUE = PSI ( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' PSI(, F6.3, ") =, F6.3)

END

PSI( 1.915) = 0.366

Output
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CPSI

Evaluate the logarithmic derivative of the gamma function for a complex
argument.

Usage
CPSI (ZI N)

Arguments

ZIN — Complex argument for which the logarithmic derivative of the gamma
function is desired. (Input)

CPSlI — Complex function value. (Output)

Comments
Informational error
Type Code
3 2 Result o€PSI (zI N) is accurate to less than one-half precision
because the argument is too near a negative integer.

Algorithm
The psi function, also called the digamma function, is defined to be

d M'(z

W) =—Inr(2) = r@
dz (2

SeeCGAMVA (page 46) for the definition ¢%(2).

The argument] must not be so small thazBhd therefor@i(z) overflows. Ifzis
close to a negative integer, the result is less accurate than half precisign. If
exactly a negative integer, the result is undefined.

Example

In this examplel(1.9 + 4.3) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CPSI, VALUE, Z
EXTERNAL CPSI, UNMACH
C Comput e
Z = (1.9, 4.3)
VALUE = CPSI (2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CPSI(, F6.3,",,F6.3,) = (, F6.3,", F6.3, "))
END
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Output
CPSI ( 1.900, 4.300) = ( 1.507, 1.255)

POCH/DPOCH (Single/Double precision)

Evaluate a generalization of Pochhammer’s symbol.

Usage

POCH(A, X)

Arguments

A — The first argument. (Input)

X — The second, differential argument. (Input)

POCH — Function value. (Output)
The generalized Pochhammer symbdi(a + x)/T" (a).

Comments
1. Informational errors
Type Code
3 2 Result oPOCH(A, X) is accurate to less than one-half

precision because the absolute value oftietoo

large. ThereforeA + X cannot be evaluated accurately.
3 2 Result oPOCH(A, X) is accurate to less than one-half

precision because eitharor A + X is too close to a

negative integer.

2. ForX a nonnegative integePOCH(A, X) is just Pochhammer’s symbol.

Algorithm

Pochhammer’s symbol ig), = (@)(a — 1)...(a—n + 1) forn a nonnegative
integer. Pochhammer’s generalized symbol is defined to be

_T(@a+x
(@)« _W

SeeGAMVA (page 44) for the definition ¢f(x).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with
either gamma or log gamma functions can be especially unreliableavidhtrge
or x is small.

Substantial loss can occuraft x or a are close to a negative integer unlgsis|
sufficiently small. To insure that the result does not overflow or underflow, one
can keep the argumeragsnda + x well within the range dictated by the gamma
function routineGAMVA or one can keep||small whenevet is large POCH also

IMSL MATH/LIBRARY Special Functions Chapter 4: Gamma Function and Related Functions « 59



C

| NTEGER

REAL

EXTERNAL

A
X
VALUE

works for avariety of arguments outside these rough limits, but any more general
limits that are also useful are difficult to specify.

Example

In this example, (1.6), ¢ is computed and printed.

Decl are vari abl es
NOUT
A, POCH, VALUE, X
POCH, UMACH

Comput e

1.6
0.8
POCH( A, X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT (' POCH(, F6.3,", F6.3,") = ', F6.4)

END

Output

POCH( 1.600, 0.800) = 1.3902

POCH1/DPOCH1 (Single/Double precision)

Evaluate a generalization of Pochhammer’s symbol starting from the first order.

Usage
POCHL( A, X)

Arguments

A — The first argument. (Input)

X — The second, differential argument. (Input)

POCH1 — Function value. (Output)

POCHL (A, X) = (POCH(A, X) - 1)/X.

Algorithm

Pochhammer’s symbol from the first order is defined to be

a), -1 TI(a+x

POCH](a,x):( ) ~1_T@+x)

Na-1

where 4), is Pochhammer’s generalized symbol. BeeH (page 59) for the
definition of @),. It is useful in special situations that require especially accurate

values whex is small. This specification is particularly suited for stability when
computing expressions such as
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MNa+x) T(b+Xx)
r(a) (o)
Note that POCH1(a, 0) = Y(a). See PSI (page 57) for the definition of Y(a).

When |x| is so small that substantial cancellation will occur if the straightforward
formulais used, we use an expansion due to fields and discussed by Luke (1969).

}/ x = POCH1(a, x) - POCH1(b, x)

Theratio (a), = I'(a+ X)/T'(a) iswritten by Luke as (@ + (x — 1)/2)* times a
polynomial in(a+ (x - 1)/2)‘2. To maintain significance in POCHL, we write for
positive a.

(a+ (x-1)/2)" =exp(xIn(a+ (x - 1)/2)) = e? = 1 + gEXPRL(Q)

where EXPRL = (€* — 1)/x. Likewise, the polynomial iswrittenP = 1 + xP, (a, X).
Thus,
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c

POCHL (a, X) = ((a), — 1)/x = EXPRL(g)(a/x + gP; (a, X)) + P, (a, X)

Substantial significance loss can occur if a + x or a are close to a negative integer
even when |x| isvery small. To insure that the result does not overflow or
underflow, one can keep the argumentsa and a + x well within the range dictated
by the gamma function routine GAMVA (page 44) or one can keep [x| small
whenever a islarge. POCH also works for a variety of arguments outside these
rough limits, but any more general limits that are also useful are difficult to
specify.

Example

In this example, POCHL (1.6, 0.8) is computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL A, POCH1, VALUE, X
EXTERNAL POCH1, UMACH

Conput e
A =1.6
X = 0.8
VALUE = POCHL(A, X)

Print the results
CALL UMACH (2, NOUT)
VWRI TE (NQUT, 99999) A, X, VALUE

99999 FORMAT (' POCH1(, F6.3,",, F6.3,") =, F6.4)

END

Output

POCH1( 1.600, 0.800) = 0.4878

BETA/DBETA (Single/Double precision)

Evaluate the compl ete beta function.

Usage
BETA(A, B)

Arguments

A — First beta parameter. (Input)
It must be positive.

B — Second beta parameter. (Input)
It must be positive.

BETA — Function value. (Output)
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Comments

Informational error

Type Code
2 1 The function underflows because A and/or B istoo large.
Algorithm
The beta function is defined to be
F@r) _ laa b-1
ab)=—""—"==|1 1-t dt
Bab) =+ Ty = e

See GAMVA (page 44) for the definition of I'(X).

The function BETA requires that both arguments be positive. In addition, the
arguments must not be so large that the result underflows.

Example
In this example, B(2.2, 3.7) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL A, BETA, VALUE, X
EXTERNAL BETA, UMACH
C Conput e
A =22
X = 3.7
VALUE = BETA(A, X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT ( BETA(, F6.3,",, F6.3,") =, F6.4)
END

Output
BETA( 2.200, 3.700) = 0.0454

CBETA

Evaluate the complex complete beta function.

Usage
CBETA(A, B)
Arguments

A — Complex first beta distribution parameter. (Input)
It must be positive.
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B — Complex second beta distribution parameter. (Input)
It must be positive.

CBETA — Complex function value. (Output)

Algorithm
The beta function is defined to be

Bab) =) = a0t

SeeCGAMVA (page 46) for the definition ¢f(2).

The argumenta anda + b must not be close to negative integers. The arguments
should not be so large (near the real axis) that the result underflowsaAlgo,
should not be so far from the real axis that the result overflows.

Example

In this examplef(1.7 + 2.2, 3.7 + 0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX A, B, CBETA, VALUE
EXTERNAL CBETA, UVACH

C Comput e
A =(1.7, 2.2)
B = (3.7, 0.4)
VALUE = CBETA(A, B)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A B, VALUE
99999 FORMAT ( CBETA((, F6.3,",, F6.3,), (', F6.3, ", F6.3,
& )=(,F6.3,",F6.3,"))
END

Output
CBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-0.033,-0.017)

ALBETA/DLBETA (Single/Double precision)

Evaluate the natural logarithm of the complete beta function for positive
arguments.

Usage
ALBETA(A, B)

Arguments

A — The first argument of thHBETA function. (Input)
It must be greater than zero.
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C
| NTEGER
REAL
EXTERNAL
C
A =
X =
VALUE =
C

B — The second argument of tBETA function. (Input)
It must be greater than zero.

ALBETA — Function value. (Output)
ALBETA returns InB(A, B) = In(I" (A)I"(B))/T (A + B).

Comments
Note that InB(A, B) = In B(B, A).

Algorithm
ALBETA computes I3(a, b) = In B(b, a). SeeBETA (page 62) for the definition of
B(a b).

The functionALBETA is defined fora > 0 andb > 0. It returns accurate results
even whera or b is very small. It can overflow for very large arguments; this
error condition is not detected except by the computer hardware.

Example

In this example, If3(2.2, 3.7) is computed and printed.
Decl are vari abl es

NOUT
A, ALBETA, VALUE, X
ALBETA, UMACH
Conput e
2.2
3.7
ALBETA(A, X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, X, VALUE
99999 FORMAT (' ALBETA(, F6.3,",, F6.3,") =, F8.4)

END

Output

ALBETA( 2.200, 3.700) = -3.0928

CLBETA

Evaluate the complex logarithm of the complete beta function.

Usage

CLBETA(A, B)

Arguments

A — Complex first beta distribution parameter. (Input)

B — Complex second beta distribution parameter. (Input)
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CLBETA — Complex function value. (Output)

Algorithm

The functionCLBETA computes Ii8(a, b). SeeCBETA (page 63) for the definition
of B(a, b).

The argumenta, b anda + b must not be close to negative integers (even though
some combinations ought to be allowed). The arguments should not be so large
that the logarithm of the gamma function overflows (presumably an improbable

condition).

Example

In this example, If3(1.7 + 2.2, 3.7 + 0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX A, B, CLBETA, VALUE
EXTERNAL CLBETA, UMACH

C Conput e
A = (1.7, 2.2)
B = (3.7, 0.4)
VALUE = CLBETA(A, B)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) A, B, VALUE
99999 FORMAT (' CLBETA((, F6.3,",, F6.3,"), (, F6.3, ", F6.3,
& )=(,F6.3,"  F6.3))
END

Output
CLBETA(( 1.700, 2.200), ( 3.700, 0.400)) = (-3.280,-2.659)

BETAI/DBETAI (Single/Double precision)

Evaluate the incomplete beta function ratio.

Usage
BETAI(X, PIN, QIN)

Arguments

X — Upper limit of integration. (Input)
X must be in the interval (0.0, 1.0) inclusive.

PIN — First beta distribution parameter. (Input)
PI N must be positive.

QIN — Second beta distribution parameter. (Input)
Q N must be positive.
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C
| NTEGER
REAL
EXTERNAL
C
X =
PI N =
QN =
VALUE =
C

wN O

BETAI — Probability that a random variable from a beta distribution having
parameter®l N andQ Nwill be less than or equal 0 (Output)
Algorithm
The incomplete beta function is defined to be
) 1 X pe _
BX(p q) - J‘ tp 1(1_t)q 1dt
B(p.a) B(p. )70
for0sx<1,p>0,q>0

Ix(p. Q) =

SeeBETA (page 62) for the definition ¢&(p, q).

The parametens andg must both be greater than zero. The argumemtst lie

in the range 0 to 1. The incomplete beta function can underflow for sufficiently
smallx and largep; however, this underflow is not reported as an error. Instead,
the value zero is returned as the function value.

The functionBETAI is based on the work of Bosten and Battiste (1974).

Example

In this examplel, 4 (2.2, 3.7) is computed and printed.
Decl are vari abl es

NOUT
BETAI, PIN, QN, VALUE, X
BETAI, UMACH
Comput e
.61
.2
.7

BETAI (X, PIN, QN)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, PIN, Q N, VALUE
99999 FORMAT ( BETAI(, F6.3, ", F6.3,",, F6.3,") =, F6.4)

END

Output

BETAI( 0.610, 2.200, 3.700) = 0.8822
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Chapter 5: Error Function
and Related Functions

Routines

5.1. Error Functions
Evaluate the error function, erf X.........ccccoveeiiiiiiiiinei, ERF 70
Evaluate the complementary error function, erfc x................. ERFC 71
Evaluate the scaled complementary error function,

2
€% @I X oo ERFCE 73
Evaluate a scaled function related to erfc,
_2 .

€77 €IC (—hZ) oo CERFE 75
Evaluate the inverse error function, erf™ X......cocoevveeeeverenenn. ERFI 76
Evaluate the inverse complementary error function,
BT Xt ERFCI 77
Evaluate Dawson’s function..........ccccccceveviiiiiii DAWS 79

5.2. Fresnel Integrals
Evaluate the cosine Fresnel integral, C(X) ........ccccoceevvvnnnnns FRESC 81
Evaluate the sine Fresnel integral, S(X) .......ccccoceviinninrnnnnnnns FRESS 81

Usage Notes

The error function is
erf(x) = ijxe“z dt
Jmtdo
The complementary error function is erfc(x) = 1 — erf(x). Dawson'’s function is
e X J: etdt

The Fresnel integrals are
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— (X T2
C(x) —Jocos(zt )dt
and
— (Ysn( T2
S(x)_josm(zt )dt
They are related to the error function by
C(2) +iS(2) = L;af(%(l—i)zj

ERF/DERF (Single/Double precision)

Evaluate the error function.

Usage
ERF( X)

Arguments
X — Argument for which the function value is desired. (Input)

ERF — Function value. (Output)

Algorithm

The error function, erk), is defined to be
2 X
erf(x) = — | e t* dt
=7,

All values ofx are legal.
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Figure 5-1 Plot of erf x

Example
In this example, erf(1.0) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL ERF, VALUE, X
EXTERNAL ERF, UNMACH
C Conput e
X = 1.0
VALUE = ERF(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( ERF(, F6.3,") =, F6.3)
END

Output
ERF( 1.000) = 0.843

ERFC/DERFC (Single/Double precision)

Evaluate the complementary error function.
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Usage

ERFC( X)

Arguments

X — Argument for which the function value is desired. (Input)
ERFC — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becawsis too large.
Algorithm

The complementary error function, e (is defined to be
2 o
fo(x) = — | et?
erfc(x) \/ﬁjx et dt

The argument must not be so large that the result underflows. Approximately,
should be less than

[—In(\/ﬁs)

wheres = AMACH(1) (page 240) is the smallest representable positive floating-
point number.

]ZIJZ

72« Chapter 5: Error Function and Related Functions IMSL MATH/LIBRARY Special Functions



1.5 4
S1.0 7
‘(? —
0.5+
] \
0.0 I e B O B O B R O
-30 -2.0 -1.0 00 1.0 2.0 3.0
Figure 5-2 Plot of erfc x
Example
In this example, erfc(1.0) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL ERFC, VALUE, X
EXTERNAL ERFC, UMACH
C Comput e
X =10
VALUE = ERFC(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( ERFC(, F6.3,") =, F6.3)
END

Output
ERFC( 1.000) = 0.157

ERFCE/DERFCE (Single/Double precision)

Evaluate the exponentially scaled complementary error function.
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Usage

ERFCE( X)

Arguments

X — Argument for which the function value is desired. (Input)
ERFCE — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becausis too large.
Algorithm

The functionERFCE(X) computes

e erfc (X)

where erfcX) is the complementary error function. $#€C (page 71) for its
definition.

To prevent the answer from underflowingnust be greater than

Xmin = —+/IN(b/ 2)

whereb = AMACH(2) is the largest representable floating-point number.

Example

In this exampleERFCE(1.0) =€ erfc(1.0) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ERFCE, VALUE, X
EXTERNAL ERFCE, UMACH
C Comput e
X = 1.0
VALUE = ERFCE( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' ERFCE(, F6.3,") =, F6.3)
END

Output
ERFCE( 1.000) = 0.428
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CERFE/ZERFE (Single/Double precision)

Evaluate the complex scaled complemented error function.

Usage
CERFE( 2)

Arguments
Z — Complex argument for which the function value is desired. (Input)

CERFE — Complex function value. (Output)

Algorithm
FunctionCERFCE is defined to be

e Z arfe(-iz) = -ie ? % [T at
Tt

Letb = AMACH(2) be the largest floating-point number. The arguraenast
satisfy

4<+b

or else the value returned is zero. If the argurneioies not satisfy(z)? - (02)*
< logb, thenb is returned. All other arguments are legal (Gautschi 1969, 1970).

Example

In this exampleCERFE(2.5 + 2.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
COVPLEX CERFE, VALUE, Z
EXTERNAL CERFE, UMACH
C Conput e
Z (2.5, 2.5)
VALUE = CERFE(2)
C Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) Z, VALUE
99999 FORMAT (' CERFE(, F6.3,',, F6.3,") = (,,
& F6.3,",F6.3,7)
END

Output
CERFE( 2.500, 2.500) = ( 0.117, 0.108)
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ERFI/DERFI (Single/Double precision)

Evaluate the inverse error function.

Usage

ERFI ( X)

Arguments

X — Argument for which the function value is desired. (Input)

ERFI — Function value. (Output)

Comments
Informational error
Type Code
3 2 Result oERFI (X) is accurate to less than one-half precision

because the absolute value of the argument is too large.

Algorithm

FunctionERFI (X) computes the inverse of the error functionedefined inERF
(page 70).

The functionERFI (X) is defined fory| < 1. IfX,,x < K| < 1, then the answer will
be less accurate than half precision. Very approximately,

Xmax =1—+/€/(4M)

wherege = AMACH(4) is the machine precision.
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Example

In this example, erf! (erf(1.0)) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ERF, ERFI, VALUE, X
EXTERNAL ERF, ERFI, UMACH
C Conput e
X = ERF(1.0)
VALUE = ERFI (X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ERFI(, F6.3,") =, F6.3)
END

Output
ERFI( 0.843) = 1.000

ERFCI/DERFCI (Single/Double precision)

Evaluate the inverse complementary error function.
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Usage
ERFCI ( X)

Arguments
X — Argument for which the function value is desired. (Input)
ERFCI — Function value. (Output)

Comments

Informational error
Type Code
3 2 Result oERFCI (X) is accurate to less than one-half precision
because the argument is too close to 2.0.

Algorithm

The functionERFCI (X) computes the inverse of the complementary error function
erfcx, defined inERFC (page 71).

The functionERFCI (X) is defined for 0 « < 2. If X,,,x <X < 2, then the answer
will be less accurate than half precision. Very approximately,

Xmax = 2—+/E/(4™)

wherege = AMACH(4) is the machine precision.
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Example

In this example, erfc! (erfc(1.0)) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ERFC, ERFCI, VALUE, X
EXTERNAL ERFC, ERFCI, UNVACH
C Conput e
X = ERFC( 1. 0)
VALUE = ERFCl (X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ERFCI(, F6.3,") =, F6.3)
END

Output
ERFCI( 0.157) =1.000

DAWS/DDAWS (Single/Double precision)

Evaluate Dawson’s function.
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Usage

DAVS( X)

Arguments

X — Argument for which the function value is desired. (Input)
DAWS — Function value. (Output)

Comments
1. Informational error
Type Code
2 1 The function underflows because the absolute value of
X is too large.
2. The Dawson function is closely related to the error function for

imaginary arguments.

Algorithm

Dawson'’s function is defined to be
_v2 X
e * Jo et’dt

It is closely related to the error function for imaginary arguments.

So that Dawson’s function does not underflogurust be less than 1§2Here,
S=AMACH(1) is the smallest representable positive floating-point number.

Example
In this exampleDAWS(1.0) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL DAWS, VALUE, X
EXTERNAL DAWS, UNVACH
C Conput e
X = 1.0
VALUE = DAWS( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( DAWS(, F6.3,") =, F6.3)
END

Output
DAWS( 1.000) = 0.538
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FRESC/DFRESC (Single/Double precision)

C

C

Evaluate the cosine Fresnel integral.

Usage
FRESC( X)

Arguments
X — Argument for which the function value is desired. (Input)

FRESC — Function value. (Output)

Algorithm

The cosine Fresnel integral is defined to be
X TU 2
C(x) =] cos| —t° |dt
(9= Jjoos( 512)

All values ofx are legal.

Example

In this exampleC(1.75) is computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL FRESC, VALUE, X
EXTERNAL FRESC, UMACH
Comput e
X = 1.75
VALUE = FRESC(X)
Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' FRESC(, F6.3, ") =, F6.3)

END

Output

FRESC( 1.750) = 0.322

FRESS/DFRESS (Single/Double precision)

Evaluate the sine Fresnel integral .

Usage
FRESS(X)
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Arguments
X — Argument for which the function value is desired. (Input)
FRESS — Function value. (Output)

Algorithm

The sine Fresnel integral is defined to be
X. (T 2
X)=| sin| —t° |dt
0= [sn( 3¢

All values ofx are legal.

Example
In this exampleS(1.75) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL FRESS, VALUE, X
EXTERNAL FRESS, UMACH
C Conput e
X =1.75
VALUE = FRESS( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( FRESS(, F6.3,") =, F6.3)
END

Output
FRESS(1.750) = 0.499
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Chapter 6: Bessel Functions

Routines

6.1. Bessel Functions of Order 0 and 1
EVAIUALE J)(X) .eeeeiieiiieieee ettt BSJO 84
EVAIUALE J} (X) eeirveeeiieeiiie e cee st see et ee e BSJ1 86
EVAIUALE Y{(X) cooeiiiiiieiie et BSYO 87
EVAIUALE Y] (X) toivreeieeeiiie e ee e BSY1 88
EVAlUALE Jy(X)..eei e BSIO 89
EVAIUALE 1 (X) rreirieeiiie et sie et etee e BSI1 91
EVAIUALE Kj(X) ooeeieiiieeiee ettt BSKO 92
EVAIUALE K (X) 1eirveeeiieeiiiee e esie e stee e e et siee e BSK1 93
EValUAte € T y(X) oovvorerreereeeece s BSIOE 95
EVAIUALE € 1 (X) e erereereeeeeeeeeeeeeee e eeeees e, BSI1E 95
EVAlUALe @XK((X) - nereerereeeeieiiiiie e e et BSKOE 96
EVAIUALE €XK] (X) veeireeeiiieeiieeeiie e sie e stee e se e see e BSK1E 97

6.2. Series of Bessel Functions, Integer Order
Evaluate Ji(X), K=0, ..., M= 1 oo BSJINS 98
Evaluate Ji(2), k=0, ..., n =1, zcompleX .........ccccuvrrreeernnnns CBJNS 99
Evaluate /:(X), K= 0, ..., M= 1 coriiiiiiii e BSINS 100
Evaluate /;(2), k=0, ..., n =1, ZcompleX ........cccvrrrrreernnnnns CBINS 102

6.3. Series of Bessel Functions, Real Order and Argument
Evaluate J, , 1(X), K= 0, ..., D=1 coriiiieiie e BSJS 103
Evaluate Y, . 4(X), K= 0, .., = Lo BSYS 105
Evaluate £,  1(X), K= 0, ..., M= Lo BSIS 106
Evaluate e 1, , 1(X), k=0, ..., D= Loiioiieieieeee e BSIES 107
Evaluate K, ; 4(X), K= 0, oo, M= Lo BSKS 109
Evaluate €K, , 1(X), k=0, ..., N= Lo, BSKES 110
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6.4. Series of Bessel Functions, Real Order and Complex Argument

Evaluate J, , ;(2), k=0, ..., D= L. CBJS 112
Evaluate Y, . 1(2), K=0, ..., M= 1 oo CBYS 113
Evaluate 1, , 4(2), K=0, ..., M= Lo CBIS 115
Evaluate K, , 1(2), K=0, ..., M= 1 oo CBKS 117

Usage Notes

The following table lists the Bessel function routines by argument and order type:

Real Argument Complex Argument
Order Order
Function |0 1 integer real integer real
J,(X) BSJO |BSJ1 |[BSJINS BSJS | CBINS CBJS
p. 84 p. 86 p. 98 p. 103 | p.99 p. 112
Y, (%) BSYO |BSY1 BSYS CBYS
p. 87 p. 88 p. 105 p. 113
1,(X) BSIO |BSI1 |BSINS BSIS | CBINS CBI S
p. 89 p. 91 p. 100 p. 106 | p. 102 p. 115
—|x| BSI OE | BSI 1E BSI ES
€M o5 |pos p. 107
K, (%) BSKO | BSK1 BSKS CBKS
p. 92 p. 93 p. 109 p. 117
—|x| BSKOE | BSK1E BSKES
€K o o6 |p o7 p. 110

BSJO/DBSJO (Single/Double precision)

Evaluate the Bessal function of the first kind of order zero.

Usage

BSJO( X)

Arguments

X — Argument for which the function value is desired. (Input)
BSJO — Function value. (Output)

Algorithm

The Bessel functiod,(X) is defined to be
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Jo(x) = %{Jg cos(xsin0)d6

To prevent the answer from being less accurate than half precision, |x| should be
smaller than

1/ e

For the result to have any precision at al, [x| must be lessthan 1/e. Here, € isthe
machine precision, € = AMACH(4).

1.0

el IO e e e e N IR e
-20.0 -10.0 0.0 10.0 20.0

Figure 6-1 Plot of Jy(x) and J;(X)

Example

In this example, Jy(3.0) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL BSJO, VALUE, X
EXTERNAL BSJO, UMACH
C Conput e
X = 3.0
VALUE = BSJO(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( BSJO(, F6.3,") =, F6.3)
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END

BSJO( 3.000) =

Output
-0. 260

BSJ1/DBSJ1 (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C

Evaluate the Bessel function of the first kind of order one.

Usage

BSJ1( X)

Arguments

X — Argument for which the function value is desired. (Input)
BSJ1 — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows because the absolute valkiésdbo
small.
Algorithm

The Bessel functiod, () is defined to be
_1n .
J1(X) _?[jo cog0 —xsinB)d 6

The argumernt must be zero or larger in absolute value thato Drevent, (x)
from underflowing. Also x| should be smaller than

1/ Ve

to prevent the answer from being less accurate than half precifioist be less
than 1£ for the result to have any precision at all. Hers,the machine
precisiong = AMACH(4), ands = AMACH(1) is the smallest representable positive
floating-point number.

Example

In this example), (2.5) is computed and printed.
Decl are vari abl es

NOUT
BSJ1, VALUE, X
BSJ1, UMACH

Conput e
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X 2.5
VALUE = BSJ1(X)
C Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSJ1(, F6.3,") ="', F6.3)
END

Output
BSJ1( 2.500) = 0.497

BSYO/DBSYO (Single/Double precision)

Evaluate the Bessel function of the second kind of order zero.

Usage

BSYO(X)

Arguments

X — Argument for which the function value is desired. (Input)
BSY0 — Function value. (Output)

Algorithm

The Bessel functioly,(x) is defined to be
1m . .
Yy(X) == sin(xsinB)d6
o(x) = [ sin(xsin®)

To prevent the answer from being less accurate than half precisioould be
smaller than

1/ e

For the result to have any precision at glnjust be less thanelHere,¢ is the
machine precisiorg, = AVACH(4).
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Figure 6-2 Plot of Y,(x) and Y;(x)
Example
In this example, Y,(3.0) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL BSYO, VALUE, X
EXTERNAL BSYO, UMACH
C Conput e
X = 3.0
VALUE = BSYO( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( BSYO(, F6.3,") =, F6.3)
END

Output
BSYO( 3.000) = 0.377

BSY1/DBSY1 (Single/Double precision)

Evaluate the Bessel function of the second kind of order one.
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C

C

Usage
BSY1( X)

Arguments
X — Argument for which the function value is desired. (Input)
BSY1 — Function value. (Output)

Algorithm
The Bessel functioiy; (x) is defined to be

1m0
Yl(x)—?[jo sin(6 - xsinB)d6

Y, (X) is defined forx > 0. To prevent the answer from being less accurate than
half precisionx should be smaller than

1/ e

For the result to have any precision at glinjust be less thanglHere g is the
machine precisiorg, = AVACH(4).

Example

In this exampleY, (3.0) is computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL BSY1, VALUE, X
EXTERNAL BSY1, UMACH

Comput e
X
VALUE

3.0
BSY1( X)

Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE

99999 FORMAT (' BSY1(, F6.3,") =, F6.3)

END

Output

BSY1( 3.000) = 0.325

BSIO/DBSIO (Single/Double precision)

Evaluate the modified Bessal function of the first kind of order zero.

Usage
BSIO(X)
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Arguments
X — Argument for which the function value is desired. (Input)

BSIO0 — Function value. (Output)

Algorithm

The Bessel functiohy(x) is defined to be
1 emt
lo(X) ==1]_ cog(xcosB)do
0(x) = | cos(xcos6)

The absolute value of the argumgmhust not be so large thelt’! overflows.
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X
Figure 6-3 Plot of f,(x) and / (x)

Example

In this examplel(4.5) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL BSI 0, VALUE, X
EXTERNAL BSI 0, UMACH
C Conput e
X = 4.5
VALUE = BSI 0( X)
C Print the results
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CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSIO(, F6.3,") =, F6.3)

END

Output

BSIO( 4.500) = 17.481

BSI1/DBSI1 (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

Evaluate the modified Bessel function of the first kind of order one.

Usage
BSI1(X)

Arguments
X — Argument for which the function value is desired. (Input)

BSI1 — Function value. (Output)

Comments

Informational error
Type Code
2 1 The function underflows because the absolute vakiesdbo
small.

Algorithm

The Bessel functioh (X) is defined to be
1¢m
l1(x) = E—[O exp(x cosB)cos6d b

The argument should not be so close to zerolift= x/2 underflows, nor so
large in absolute value thelt! and, thereford, (x) overflows.

Example

In this examplel; (4.5) is computed and printed.

Decl are vari abl es
NOUT
BSI 1, VALUE, X
BSI 1, UMACH

Conput e

4.5
BSI 1( X)

Print the results

CALL UMACH (2, NOUT)
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WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSI1(, F6.3,’) =, F6.3)
END

Output
BSI1( 4.500) = 15.389

BSKO/DBSKO (Single/Double precision)

Evaluate the modified Bessel function of the third kind of order zero.

Usage

BSKO(X)

Arguments

X — Argument for which the function value is desired. (Input)
BSKO — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becausis too large.
Algorithm

The Bessel functioK(x) is defined to be
Ko(X) = j: cos(xsint)dt

The argument must be larger than zero, but not so large that the result,
approximately equal to

Tt/ (2x)e™*

underflows.
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Figure 6-4 Plot of Ky(x) and K (x)

Example
In this example, K,(0.5) is computed and printed.

C Decl are vari abl es

| NTEGER NOUT

REAL BSKO, VALUE, X

EXTERNAL BSKO, UMACH
C Comput e

X = 0.5

VALUE = BSKO( X)
C

Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSKO(', F6.3,") =", F6.3)
END

Output
BSKO( 0.500) = 0.924

BSK1/DBSK1 (Single/Double precision)

Evaluate the modified Bessel function of the third kind of order one.
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Cc

Usage

BSK1( X)

Arguments

X — Argument for which the function value is desired. (Input)
BSK1 — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becawsis too large.
Algorithm

The Bessel functioK; (x) is defined to be
Ky(X) = jo sin(xsint)sint dt

The argument must be large enough (> max){l$)) thatK, (x) does not
overflow, andk must be small enough that the approximate answer,

T (2x) 7>

does not underflow. Hers,is the smallest representable positive floating-point
numbers = AMACH(1) , andb = AMACH(2) is the largest representable floating-
point number.

Example

In this exampleK; (0.5) is computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL BSK1, VALUE, X
EXTERNAL BSK1, UMACH
Conput e
X = 0.5
VALUE = BSK1(X)
Print the results
CALL UMACH (2, NOUT)
WRI TE (NQUT, 99999) X, VALUE

99999 FORMAT ( BSK1(, F6.3,") =, F6.3)

END

Output

BSK1( 0.500) = 1.656
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BSIOE/DBSIOE (Single/Double precision)

C

C

| NTEGER

REAL

EXTERNAL

X
VALUE

Evaluate the exponentially scaled modified Bessal function of the first kind of
order zero.

Usage
BSI 0E( X)

Arguments
X — Argument for which the function value is desired. (Input)
BSIOE — Function value. (Output)

Algorithm

FunctionBSI OE computes gl Io(X). For the definition of the Bessel function
lo(X), seeBSI 0 (page 89).

Example

In this exampleBSI 0E(4.5) is computed and printed.

Decl are vari abl es
NOUT
BSI OE, VALUE, X
BSI OE, UMACH

Comput e

4.5
BSI 0E( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSIOE(, F6.3,") =*, F6.3)

END

Output

BSIOE( 4.500) = 0.194

BSI1LE/DBSI1E (Single/Double precision)

Evaluate the exponentially scaled modified Bessel function of the first kind of
order one.

Usage
BSI1E(X)
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Cc

Cc

| NTEGER

REAL

EXTERNAL

X
VALUE

Arguments
X — Argument for which the function value is desired. (Input)
BSI 1E — Function value. (Output)

Comments

Informational error
Type Code
2 1 The function underflows because the absolute vakiesdbo
small.

Algorithm

FunctionBSI 1E computes @l [, (X). For the definition of the Bessel function
I,(X), seeBSI 1 (page 91). The functioBSI 1E underflows if}|/2 underflows.

Example

In this exampleBSI 1E(4.5) is computed and printed.

Decl are vari abl es
NOUT
BSI 1E, VALUE, X
BSI 1E, UVACH

Conput e

4.5
BSI 1E( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSI1E(, F6.3,") =, F6.3)

END

Output

BSI1E( 4.500) = 0.171

BSKOE/DBSKOE (Single/Double precision)

Evaluate the exponentially scaled modified Bessel function of the third kind of
order zero.

Usage

BSKOE(X)

Arguments

X — Argument for which the function value is desired. (Input)
BSKOE — Function value. (Output)
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Algorithm

Function BSKOE computes €K, (x). For the definition of the Bessel function
Ky (X), see BSKO (page 92). The argument must be greater than zero for the result

to be defined.
Example
In this example, BSKOE(0.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL BSKOE, VALUE, X
EXTERNAL BSKOE, UVACH
C Comput e
X = 0.5
VALUE = BSKOE( X)
C Print the results

CALL UMACH (2, NOUT)

WRI TE (NOUT, 99999) X, VALUE

99999 FORMAT (' BSKOE(, F6.3,") =, F6.3)
END

Output
BSKOE( 0.500) = 1.524

BSK1E/DBSK1E (Single/Double precision)

Evaluate the exponentially scaled modified Bessel function of the third kind of
order one.

Usage

BSK1E(X)

Arguments

X — Argument for which the function value is desired. (Input)
BSK1E — Function value. (Output)

Algorithm

FunctionBSK1E computes™K; (X). For the definition of the Bessel function

K, (X), seeBSK1 (page 93). The answBBK1E = 'K, (x) = 1/x overflows ifx is
too close to zero.

Example

In this exampleBSK1E(0.5) is computed and printed.
C Decl are vari abl es
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| NTEGER NOUT

REAL BSK1E, VALUE, X
EXTERNAL BSK1E, UVACH
C Conput e
X = 0.5
VALUE = BSK1E( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BSK1E(, F6.3,") =", F6.3)
END

Output
BSK1E( 0.500) = 2.731

BSINS/DBSJNS (Single/Double precision)

Evaluate a sequence of Bessel functions of the first kind with integer order and
real arguments.

Usage
CALL BSJNS (X, N, BS)

Arguments

X — Argument for which the sequence of Bessel functions is to be evaluated.
(Input)
Its absolute value must be less thah 10

N — Number of elements in the sequence. (Input)
It must be a positive integer.

BS — Vector of lengthN containing the values of the function through the series.
(Output)

BS(1 ) contains the value of the Bessel function of orderl atx for1 =1 toN.
Algorithm

The Bessel functiod,(x) is defined to be
_1m .
J,(x) = ?[_[0 cog(xsin8-nB)do

The algorithm is based on a code due to Sookne (1973b) that uses backward
recursion with strict error control.
Example

In this exampleJ,(10.0),n =0, ..., 9 is computed and printed.
C Decl are vari abl es
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INTEGER N
PARAVETER  ( N=10)

C
| NTEGER K, NOUT
REAL BS(N), X
EXTERNAL BSINS, UVACH
C Conput e
X =10.0
CALL BSINS (X, N, BS)
C Print the results
CALL UMACH (2, NaouT)
DO 10 K=1, N
WRI TE (NOUT, 99999) K-1, X, BS(K)
10 CONTI NUE
99999 FORMAT ("Jsub’, 12, (', F6.3,") =", F6.3)
END
Output
Jsub 0 (10.000) =-0.246
Jsub 1 (10.000) = 0.043
Jsub 2 (10.000) = 0.255
Jsub 3(10.000) = 0.058
Jsub 4 (10.000) =-0.220
Jsub 5(10.000) =-0.234
Jsub 6 (10.000) =-0.014
Jsub 7 (10.000) = 0.217
Jsub 8 (10.000) = 0.318
Jsub 9 (10.000) = 0.292

CBJNS/DCBJNS (Single/Double precision)

Evaluate a sequence of Bessel functions of the first kind with integer order and
complex arguments.

Usage
CALL CBJINS (Z, N, CBS)

Arguments

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be less than 1@ absolute value.

N — Number of elements in the sequence. (Input)
It must be positive.

CBS — Vector of lengthN containing the values of the function through the
series. (Output)
CBS(1) contains the value of the Bessel function of orderl atzfor1 =1 toN.
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Algorithm
The complex Bessel function J,(2) is defined to be

_1m .
J“(Z)_Ejo cos(zsin8-nB)d6

This codeis based on the work of Sookne (1973a) and Olver and Sookne (1972).
It uses backward recursion with strict error control.

Example

In this example, J,(10 + 10i), n =0, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=11)

| NTEGER K, NOUT
COVPLEX CBS(N), Z
EXTERNAL CBJINS, UVACH
C Conput e
Z = (10.0, 10.0)
CALL CBINS (Z, N, CBS)
C Print the results
CALL UMACH (2, NaouT)
DO 10 K=1, N
WRI TE (NOUT, 99999) K-1, Z, CBS(K)
10 CONTI NUE
99999 FORMAT ("Jsub’, 12, ((, F6.3,",, F6.3,
& )=(,F9.3,",F9.3,7)
END

Output
J sub 0 ((10.000,10.000)) = (-2314.975, 411.563)
Jsub 1 ((10.000,10.000)) = ( -460.681,-2246.627)
Jsub 2 ((10.000,10.000)) = ( 2044.245, -590.157)
Jsub 3((10.000,10.000)) = ( 751.498, 1719.746)
J sub 4 ((10.000,10.000)) = (-1302.871, 880.632)
J sub 5 ((10.000,10.000)) = ( -920.394, -846.345)
J sub 6 ((10.000,10.000)) = ( 419.501, -843.607)
J sub 7 ((10.000,10.000)) = ( 665.930, 88.480)
J sub 8 ((10.000,10.000)) = ( 108.586, 439.392)
J sub 9 ((10.000,10.000)) = ( -227.548, 176.165)
J sub 10 ((10.000,10.000)) = ( -154.831, -76.050)

BSINS/DBSINS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the first kind with integer
order and real arguments.

Usage
CALL BSINS (X, N, BSI)
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Arguments

X — Real argument for which the sequence of Bessel functions is to be evaluated.
(Input)
N — Number of elements in the sequence. (Input)

BSI — Vector of lengthN containing the values of the function through the
series. (Output)

BSI (1) contains the value of the Bessel function of orderl atx forI = 1 toN.
Algorithm

The Bessel functioh,(x) is defined to be
_1m
I,(X) = Ejo exp(xcosB)cognB)do

The inputx must satisfyy < log(b) whereb = AMACH(2) is the largest

representable floating-point number.

The algorithm is based on a code due to Sookne (1973b), which uses backward
recursion.

Example

In this examplel,,(10.0),n =0, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=11)
C
| NTEGER K, NOUT
REAL BSI(N), X
EXTERNAL BSI NS, UMACH
C Comput e
X =10.0
CALL BSINS (X, N, BSI)
C Print the results
CALL UMACH (2, NaUT)
DO 10 K=1, N
VWRI TE (NOUT, 99999) K-1, X, BSI(K)
10 CONTI NUE
99999 FORMAT (" Isub’, 12," (, F6.3,") =", F9.3)
END
Output

I' sub 0 (10.000) = 2815.716
I'sub 1(10.000) = 2670.988
I'sub 2 (10.000) = 2281.519
I'sub 3 (10.000) = 1758.381
I'sub 4 (10.000) = 1226.490
I'sub 5(10.000) = 777.188
I'sub 6 (10.000) = 449.302
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| sub 7 (10.000) = 238.026
| sub 8 (10.000) = 116.066
| sub 9 (10.000) =  52.319
| sub 10 (10.000) =  21.892

CBINS/DCBINS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the first kind with integer
order and complex arguments.

Usage
CALL CBINS (Z, N, CBS)

Arguments

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be less than 1@ absolute value.

N — Number of elements in the sequence. (Input)
It must be positive.

CBS — Vector of lengtiN containing the values of the function through the
series. (Output)
CBS(1 ) contains the value of the Bessel function of orderl atzfor1 = 1 toN.

Algorithm

The complex Bessel functidy(2) is defined to be
1m .
1,(2) = Ejo cos(zsn6-nB)do

This code is based on the work of Sookne (1973a) and Olver and Sookne (1972).
It uses backward recursion with strict error control.

Example

In this examplel,,(10 + 10),n =0, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=11)

| NTEGER K, NOUT
COVPLEX CBS(N, Z
EXTERNAL CBI NS, UVACH
C Comput e
Z = (10.0, 10.0)
CALL CBINS (Z, N, CBS)
C Print the results
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CALL UMACH (2, NOUT)
DO 10 K=1, N

WRI TE (NOUT, 99999) K-1, Z, CBS(K)

10 CONTI NUE
99999 FORMAT (' I'sub’, 12, ((, F6.3,",, F6.3,

&

NN =(,F93,",F9.3,)

END

| sub
| sub
| sub
| sub
| sub
| sub
| sub
| sub
| sub
| sub

Output

0 ((10.000,10.000)) = (-2314.975, -411.563)
1 ((10.000,10.000)) = (-2246.627, -460.681)
2 ((10.000,10.000)) = (-2044.245, -590.157)
3 ((10.000,10.000)) = (-1719.746, -751.498)
4 ((10.000,10.000)) = (-1302.871, -880.632)
5((10.000,10.000)) = ( -846.345, -920.394)
6 ((10.000,10.000)) = ( -419.501, -843.607)
7 ((10.000,10.000)) = ( -88.480, -665.930)

8 ((10.000,10.000)) = ( 108.586, -439.392)
9 ((10.000,10.000)) = ( 176.165, -227.548)

I sub 10 ((10.000,10.000)) = ( 154.831, -76.050)

BSJS/DBSJS (Single/Double precision)

Evaluate a sequence of Bessel functions of the first kind with real order and real

positive arguments.

Usage
CALL BSJS (XNU, X, N, BS)

Arguments

XNU — Real argument which is the lowest order desired.
It must be at least zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated.

(Input)
It must be nonnegative.

N — Number of elements in the sequence.

BS — Vector of lengthN containing the values of the function through the series.

(Output)

BS(1 ) contains the value of the Bessel function of oxdes+1 — 1 atxforl =1

toN.

Comments

Automatic workspace usage is

BSJS 2 0ONunits, or
DBSJS 4 ONunits.
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Workspace may be explicitly provided, if desired, by use of B2JS/DB2JS. The
referenceis

CALL B2JS (XNU, X, N, BS, W)
The additional argument is
WK — work array of length ZIN.

Algorithm
The Bessel functiod,(x) is defined to be
x/2)Y T .
Jy(x) = ¥J cos(xcos)sin®’ 6 df
Jr(v+1/2) Y0
This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses
backward recursion.
Example

In this example), (2.4048256)y =0, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=11)
C
| NTEGER K, NOUT
REAL BS(N), X, XNU
EXTERNAL BSJS, UMACH
C Conput e
XNU = 0.0
X = 2.4048256
CALL BSJS (XNU, X, N, BS)
C Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) XNU+K-1, X, BS(K)

10 CONTI NUE

99999 FORMAT (' Jsub’, F6.3," (, F6.3,") =, F10.3)

END

Output

Jsub 0.000 (2.405)=  0.000
Jsub 1.000 (2.405)=  0.519
Jsub 2.000 (2.405)=  0.432
Jsub 3.000 (2.405)=  0.199
Jsub 4.000 (2.405)=  0.065
Jsub 5.000 (2.405)=  0.016
Jsub 6.000 (2.405)=  0.003
Jsub 7.000 (2.405)=  0.001
Jsub 8.000 (2.405)=  0.000
Jsub 9.000 (2.405)=  0.000
Jsub 10.000 ( 2.405) =  0.000
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BSYS/DBSYS (Single/Double precision)

Evaluate a sequence of Bessel functions of the second kind with real nonnegative
order and real positive arguments.

Usage
CALL BSYS (XNU, X, N, BSY)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

BSY — Vector of lengtiN containing the values of the function through the
series. (Output)

BSY(I ) contains the value of the Bessel function of orderl +XNU atx for

| =1toN.

Algorithm

The Bessel functiolv,(x) is defined to be

Y, (x) = 1—1T [cos(xsin6 - ve)do

_1_]-[.[: [evt +e M COS(VT[)] e~ xsinht gt

The variablev must satisfy & v < 1. If this condition is not met, th@s,; is set to

-b. In addition x must be in%,,, x);] wherex,, = 6(16°) andx,, = 16’. If x <x,,,

then-b (b = AMACH(2), the largest representable number) is returned; acel if
Xy then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody
1969;NATSFUNPACK 1976). It uses a special series expansion for small
arguments. For moderate arguments, an analytic continuation in the argument
based on Taylor series with special rational minimax approximations providing
starting values is employed. An asymptotic expansion is used for large arguments.

Example

In this example, Y5625 + v —1(0.0078125)y = 1, 2, 3 is computed and printed.
C Decl are vari abl es
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| NTECER N
PARAMETER  ( N=3)
| NTECER K, NoUT
REAL BSY(N), X, XNU
EXTERNAL  BSYS, UVACH
Conput e
XNU = 0.015625
X = 0.0078125

CALL BSYS (XNU, X, N, BSY)

Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) XNU+K-1, X, BSY(K)

10 CONTI NUE
99999 FORMAT ('Y sub’, F6.3,’ (, F6.3,") =, F10.3)
END
Output

Y sub 0.016 (0.008) = -3.189
Y sub 1.016 (0.008) = -88.096
Y sub 2.016 ( 0.008) = -22901.732

BSIS/DBSIS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the first kind with real order
and real positive arguments.

Usage
CALL BSIS (XNU, X, N, BSI)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be greater than or equal to zero and less than one.

X — Real argument for which the sequence of Bessel functions is to be evaluated.
(Input)
N — Number of elements in the sequence. (Input)

BSI — Vector of lengthN containing the values of the function through the
series. (Output)

BSI (1) contains the value of the Bessel function of orderl +XNU atx for

| =1toN.

Algorithm

The Bessel functioh,(x) is defined to be

_ 1 yxcoso _SIN(VT) e _ycosht-vt
I\,(x)—ﬁjoe cos(ve)dB - == jo e ot
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The input x must be nonnegative and less than or equal to log(b) (b = AMACH(2),
the largest representable number). The argument v = XNU must satisfy O<v < 1.

Function BSI S is based on a code due to Cody (1983), which uses backward
recursion.
Example

Inthisexample, 1, _;(10.0), v =1, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=10)
C
| NTEGER K, NOUT
REAL BSI (N, X, XNU
EXTERNAL BSI' S, UMACH
C Conput e
XNU = 0.0
X =10.0
CALL BSIS (XNU, X, N, BSI)
C Print the results
CALL UMACH (2, NauT)
DO 10 K=1, N
WRI TE ( NOUT, 99999) XNU+K-1, X, BSI (K)
10 CONTI NUE
99999 FORMAT (' Isub’, F6.3," (, F6.3,") =, F10.3)
END

Output

| sub 0.000 (10.000) = 2815.717
| sub 1.000 (10.000) = 2670.988
| sub 2.000 (10.000) = 2281.519
| sub 3.000 (10.000) = 1758.381
| sub 4.000 (10.000) = 1226.491
| sub 5.000 (10.000) = 777.188
I sub 6.000 (10.000) = 449.302
I sub 7.000 (10.000) = 238.026
| sub 8.000 (10.000) = 116.066
I sub 9.000 (10.000) = 52.319

BSIES/DBSIES (Single/Double precision)

Evaluate a sequence of exponentially scaled modified Bessel functions of the first
kind with nonnegative real order and real positive arguments.

Usage
CALL BSIES (XNU, X, N, BSI)
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Arguments

XNU — Real argument which is the lowest order desired. (Input)
It must be at least zero and less than one.

X — Real positive argument for which the sequence of Bessel functions is to be
evaluated. (Input)

It must be nonnegative and less thah 10
N — Number of elements in the sequence. (Input)

BSI — Vector of lengtiN containing the values of the function through the
series. (Output)

BSI (1) contains the value of the Bessel function of orderl + XNU atx for| =
1 toN multiplied by expfX).

Algorithm

FunctionBSI ES evaluate® ™ |, ;_,(X), fork =1, ..., n. For the definition of

I,(X), seeBSI S (page 106). The algorithm is based on a code due to Cody (1983),
which uses backward recursion.

Example

In this examplel,, _;(10.0),v =1, ..., 10 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER (N=10)
C
| NTEGER K, NOUT
REAL BSI (N, X, XNU
EXTERNAL BSI ES, UVACH
C Conput e
XNU = 0.0
X =10.0
CALL BSIES (XNU, X, N, BSI)
C Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) X, XNU+K-1, X, BSI (K)

10 CONTI NUE

99999 FORMAT ( exp(-', F6.3,") * I sub’, F6.3,

& '(,F63,")=
END

exp(-10.000) * I sub
exp(-10.000) * I sub
exp(-10.000) * I sub
exp(-10.000) * I sub
exp(-10.000) * I sub
exp(-10.000) * I sub
exp(-10.000) * I sub

', F6.3)

Output

0.000 (10.000) = 0.128
1.000 (10.000) = 0.121
2.000 (10.000) = 0.104
3.000 (10.000) = 0.080
4.000 (10.000) = 0.056
5.000 (10.000) = 0.035
6.000 (10.000) = 0.020
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exp(-10.000) * | sub 7.000 (10.000) = 0.011
exp(-10.000) * | sub 8.000 (10.000) = 0.005
exp(-10.000) * | sub 9.000 (10.000) = 0.002

BSKS/DBSKS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the third kind of fractional
order.

Usage
CALL BSKS (XNU, X, NN, BK)

Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than one in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated.
(Input)
NIN — Number of elements in the sequence. (Input)

BK — Vector of lengtiNl N containing the values of the function through the
series. (Output)

Comments

1. If NI Nis positive BK(1) contains the value of the function of oroew,
BK(2) contains the value of the function of ord&iJ + 1, ... and
BK(NI N) contains the value of the function of ord@t + NI N— 1.

2. If NI Nis negativeBK(1) contains the value of the function of oro@ar,
BK(2) contains the value of the function of ordely—- 1, ... and
BK(ABS(NI N)) contains the value of the function of ord@t + NI N+ 1.

Algorithm
The Bessel functioK,(x) is defined to be
Tt i . . . Tt
K, () = Ee""'/z [i 3,3%) - Y, (ix)] for —m<agx< 5
Currently,v is restricted to be less than one in absolute value. A tota|l\ljies

is stored in the arragK. For positiven, BK(1) =K, (X), BK(2) =K, ;1 (¥), ...,
BK(n) =K, ., —1(X). For negativen, BK(1) =K, (X), BK(2) =K, _;(X), ..., BK(]n|) =

Kv+n+l'

BSKS is based on the work of Cody (1983).
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Example

In thisexample, K,,_; (10.0), v =1, ..., 10 is computed and printed.

Decl are vari abl es
| NTEGER NI N
PARAMETER (NI N=10)

| NTEGER K, NOUT
REAL BS(NIN), X, XNU
EXTERNAL BSKS, UMACH
Conput e
XNU = 0.0
X = 10.0
CALL BSKS (XNU, X, NIN, BS)
Print the results
CALL UMACH (2, NaouT)
DO 10 K=1, NN
WRI TE (NOUT, 99999) XNU+K-1, X, BS(K)

10 CONTI NUE
99999 FORMAT ( Ksub’, F6.3, (, F6.3,") =, E10.3)
END

K sub
K sub
K sub
K sub
K sub
K sub
K sub
K sub
K sub
K sub

Output
0.000 (10.000) = 0.178E-04
1.000 (10.000) = 0.186E-04
2.000 (10.000) = 0.215E-04
3.000 (10.000) = 0.273E-04
4.000 (10.000) = 0.379E-04
5.000 (10.000) = 0.575E-04
6.000 (10.000) = 0.954E-04
7.000 (10.000) = 0.172E-03
8.000 (10.000) = 0.336E-03
9.000 (10.000) = 0.710E-03

BSKES/DBSKES (Single/Double precision)

Evaluate a sequence of exponentially scaled modified Bessel functions of the
third kind of fractional order.

Usage
CALL BSKES (XNU, X, NIN, BKE)
Arguments

XNU — Fractional order of the function. (Input)
XNU must be less than 1.0 in absolute value.

X — Argument for which the sequence of Bessel functions is to be evaluated.

(Input)
NIN — Number of elements in the sequence. (Input)
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| NTEGER

PARAMETER

| NTEGER

REAL

EXTERNAL

XNU
X

0.5
2.0

BKE — Vector of lengtiNI N containing the values of the function through the
series. (Output)

Comments

1. If NI Nis positive,BKE(1) containsEXP(X) times the value of the function
of orderXNu, BKE(2) containEEXP(X) times the value of the function of
orderXNU + 1, ..., andBKE(NI N) containsEXP(X) times the value of the
function of orderXNU + NI N— 1.

2. If NI Nis negativeBKE(1) containsEXP(X) times the value of the
function of ordefXNU, BKE(2) containEEXP(X) times the value of the
function of ordexxXNU - 1, ..., andBKE(ABS(NI N)) containsEXP(X) times
the value of the function of ord&NU + NI N+ 1.

Algorithm

FunctionBSKES evaluateg'K, . ;_,(X), fork =1, ..., n. For the definition of
K,(X), seeBSKS (page 109).

Currently,v is restricted to be less than 1 in absolute value. A tota] eélues is
stored in the arraBkE. Forn positive,BKE(1) contains™Kv(x), BKE(2) contains
e'K, ;1 (%), ..., andBKE(N) containse™K, . ,, _; (X). Forn negative BKE(1)
containse™K,(x), BKE(2) containeK,, _,(X), ..., andBKE(|n]) containe™K, , ,, .
1(X). This routine is particularly useful for calculating sequences for large

providedn < x. (Overflow becomes a problemnif<< x.) n must not be zero, and
X must not be greater than zero. Moreofgmnust be less than 1. Also, whah |

is large compared witk [v + n| must not be so large theliK,, ,(X) = e'T(jv +
n)/[20¢2)" * "] overflows.
BSKES is based on the work of Cody (1983).

Example

In this exampleK, _, »(2.0),v = 1,..., 6 is computed and printed.
Decl are vari abl es

NI N
(NI N=6)

K, NOUT
BKE(NIN), X, XNU
BSKES, UMACH

Conput e

CALL BSKES (XNU, X, NN, BKE)

Print the results

CALL UMACH (2, NOUT)
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DO 10 K=1,

WRI TE (
10 CONTI NUE

NI N
NOUT, 99999) X, XNU+K-1, X, BKE(K)

99999 FORMAT (’ exp(’, F6.3,") * K sub’, F6.3,

& '(,F63,)="
END

,F8.3)

Output

exp( 2.000) * K sub 0.500 (2.000) = 0.886
exp( 2.000) * K sub 1.500 (2.000) = 1.329
exp( 2.000) * K sub 2.500 (2.000) = 2.880
exp( 2.000) * K sub 3.500 (2.000) = 8.530
exp( 2.000) * K sub 4.500 ( 2.000) = 32.735
exp( 2.000) * K sub 5.500 ( 2.000) = 155.837

CBJS/DCBJS (Single/Double precision)

Evaluate a sequence of Bessel functions of the first kind with real order and
complex arguments.

Usage
CALL CBJS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater thari/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of lengtiN containing the values of the function through the
series. (Output)

CBS(1 ) contains the value of the Bessel function of oxdes +1 — 1 atz forl =
1toN

Comments
Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entriesdBS are valid.
Algorithm

The Bessel functiod,(2) is defined to be
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Jv(2)= %chos(zsi n6-ve)do - &1:”)‘[: ezsinht-vt 4

Tt
for [argZ <~
2
This codeis based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).
This code computes J,(2) from the modified Bessel function |,,(2) (see page 116),
using the following relation, withp = e™:
pl,(z/p) for-m/2<argz<m
YV(Z) = 3 3
p°ly(p72) for-m<argz<sTm/2
Example

Inthisexample, Jy5 ,,-1(1.2+ 0.5i),v =1, ..., 4is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)
C
| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z
EXTERNAL CBJS, UNMACH
C Comput e
XNU = 0.3
Z =(1.2, 0.5)
CALL CBJS (XNU, Z, N, CBS)
C Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) XNU+K-1, Z, CBS(K)
10 CONTI NUE
99999 FORMAT (' Jsub’, F6.3," ((, F6.3,",, F6.3,
& )=(,F9.3,  F9.3,°))

END
Output
Jsub 0.300 (( 1.200, 0.500)) =( 0.774, -0.107)
Jsub 1.300 (( 1.200, 0.500)) = ( 0.400, 0.159)
Jsub 2.300 (( 1.200, 0.500)) =( 0.087, 0.092)
Jsub 3.300 (( 1.200, 0.500)) =( 0.008, 0.024)

CBYS/DCBYS (Single/Double precision)

Evaluate a sequence of Bessel functions of the second kind with real order and
complex arguments.
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Usage
CALL CBYS (XNU, Z, N, CBS)
Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater thari/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of lengtiN containing the values of the function through the
series. (Output)

CBS(1 ) contains the value of the Bessel function of oxdes +1 — 1 atz forl =
1toN

Comments
1. Automatic workspace usage is

CBYS 2 [Nunits, or
DCBYS 4 [N units.

Workspace may be explicitly provided, if desired, by use of
C2YS/DC2YS . The reference is

CALL C2YS (XNU, Z, N, CBS, FK)
The additional argument is
FK — complex work vector of lengtk

2. Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entriesdBsS are valid.

Algorithm

The Bessel functiolt,(2) is defined to be
1 ,m. .
Y,(2) = TJOS' n(zsin®-v0)de
- Sn(VT[) J-oo [eV[ + e—V[ COS(Vt)]eZSinht dt
TT 0

T
f —
or|argz|<2

This code is based on the caseSSEC of Barnett (1981) and Thompson and
Barnett (1987).
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This code computes Y,,(2) from the modified Bessel functions|,(z) and K,(2) (see
CBI S, page 115, and CBKS, page 117), using the following relation:

Y, (2) = VT2 (2) —Ee“’"“ZKV(z) for —m<argz< T/ 2
i

Example
Inthisexample, Y,0.3+n—-1(1.2+ 0.5i),v =1, ..., 4 is computed and printed.
C Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)
C
| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N), Z
EXTERNAL CBYS, UVACH
c Conput e
XNU = 0.3
Z =(1.2, 0.5)
CALL CBYS (XNU, Z, N, CBS)
C Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) XNU+K-1, Z, CBS(K)
10 CONTI NUE
99999 FORMAT (' Y sub’, F6.3, " ((, F6.3,",, F6.3,
& ) =(, F9.3,° F9.3))

END
Output
Y sub 0.300 (( 1.200, 0.500)) = ( -0.013, 0.380)
Y sub 1.300 (( 1.200, 0.500)) = ( -0.716, 0.338)
Y sub 2.300 (( 1.200, 0.500)) = ( -1.048, 0.795)
Y sub 3.300 (( 1.200, 0.500)) = ( -1.625, 3.684)

CBIS/DCBIS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the first kind with real order
and complex arguments.

Usage
CALL CBIS (XNU, Z, N, CBS)
Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater thafl/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)
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N — Number of elements in the sequence. (Input)

CBS — Vector of lengtiN containing the values of the function through the
series. (Output)
CBS(1 ) contains the value of the Bessel function of oxdes +1 — 1 atz for| =

1toN.
Comments
Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entriesdBS are valid.
Algorithm

The modified Bessel functidp(2) is defined to be
—VTTi i Tt
I,(2) = V™23, (z™/?) for-m< argzsz

where the Bessel functiai)(2) is defined inBSJS (page 103).

This code is based on the caseSSCC of Barnett (1981) and Thompson and
Barnett (1987).

For large argumentg, Temme’s (1975) algorithm is used to fin). Thel, (2

values are recurred upward (if this is stable). This involves evaluating a continued
fraction. If this evaluation fails to converge, the answer may not be accurate. For
moderate and small arguments, Miller's method is used.

Example

In this examplely; ., (1.2 + 0.5),v =1,..., 4 is computed and printed.

Decl are vari abl es
| NTEGER N
PARAMETER  ( N=4)

| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N, Z
EXTERNAL CBI S, UVACH
Conput e
XNU = 0.3
V4 = (1.2, 0.5
CALL CBI'S (XNU, Z, N, CBS)
Print the results
CALL UMACH (2, NaouT)
DO 10 K=1, N
WRI TE ( NOUT, 99999) XNU+K-1, Z, CBS(K)

10 CONTI NUE
99999 FORMAT (' Isub’, F6.3," ((, F6.3,",, F6.3,

N =( F9.3,",F9.3,7)
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END

Output
I sub 0.300 (( 1.200, 0.500)) = ( 1.163, 0. 396)
| sub 1.300 (( 1.200, 0.500)) = ( 0. 447, 0.332)
| sub 2.300 (( 1.200, 0.500)) = ( 0. 082, 0.127)
I sub 3.300 (( 1.200, 0.500)) = ( 0. 006, 0. 029)

CBKS/DCBKS (Single/Double precision)

Evaluate a sequence of modified Bessel functions of the second kind with real
order and complex arguments.

Usage
CALL CBKS (XNU, Z, N, CBS)

Arguments

XNU — Real argument which is the lowest order desired. (Input)
XNU must be greater thari/2.

Z — Complex argument for which the sequence of Bessel functions is to be
evaluated. (Input)

N — Number of elements in the sequence. (Input)

CBS — Vector of lengtiN containing the values of the function through the
series. (Output)

CBS(1 ) contains the value of the Bessel function of odes +1 — 1 atz for

| =1toN.

Comments

1. Automatic workspace usage is

CBKS 2 0ONunits, or
DCBKS 4 ON units.

Workspace may be explicitly provided, if desired, by use of
C2KS/DC2KS. The reference is

CALL C2KS (XNU, Z, N, CBS, FK)
The additional argument is

FK — Complex work vector of lengtk

2. Informational errors
Type Code
3 1 One of the continued fractions failed.
4 2 Only the first several entriesGBS are valid.
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Algorithm
The Bessal function K, (2) is defined to be

K,(2) = ge"”i’z[iJv(iz) -Y,(iz2)] for-m< argzs1—2T

where the Bessel function J,(2) is defined in CBJS (page 112) and Y,,(2) is defined
in CBYS (page 113).

This codeis based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find
K,(2. This involves evaluating a continued fraction. If this evaluation fails to
converge, the answer may not be accurate. For gnaalleumann series is used
to computeK,(2). Upward recurrence of th€,(2) is always stable.

Example

In this exampleK,; ., (1.2 +0.5),v=1,..., 4 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER ( N=4)
C
| NTEGER K, NOUT
REAL XNU
COVPLEX CBS(N, Z
EXTERNAL CBKS, UVACH
C Conput e
XNU = 0.3
V4 = (1.2, 0.5
CALL CBKS (XNU, Z, N, CBS)
C Print the results

CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NOUT, 99999) XNU+K-1, Z, CBS(K)
10 CONTI NUE
99999 FORMAT ( K sub’, F6.3, " ((, F6.3, ", F6.3,
& )=(,F9.3, " F9.3, "))

END
Output
K sub 0.300 (( 1.200, 0.500)) = ( 0.246, -0.200)
K sub 1.300 (( 1.200, 0.500)) =( 0.336, -0.362)
K sub 2.300 (( 1.200, 0.500)) = ( 0.587, -1.126)
K sub 3.300 (( 1.200, 0.500)) = ( 0.719, -4.839)
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Chapter 7: Kelvin Functions

Routines
Evaluate Derp(X) ..occvvveeeeieeeiiee e BERO 121
Evaluate Deip(X) .. uvuvurmrmrreminniiiiiiiiiiiiiiiiiiieiannenna e BEIO 122
Evaluate Kerg(X)....ocuueeeeieeeiiiiiie e AKERO 123
Evaluate Keip(X) . .coovvveeeiiieeeeiiiiee e AKEIO 124
Evaluate DEr' )(X) ..oeoeeeeeeeeeeeee e BERPO 124
Evaluate Deip(X) .. .uuvurmrremrmrnimiiiiiiiiiiiiiiiiiiinainnnn e BEIPO 125
EValUAtE KEI"§(X)..cuveiveieieeieeie ettt AKERPO 126
EVAlUALE KEI')(X) vevveereirreierireiieiee et eieste et ieste e sre e ere s AKEIPO 127
Evaluate Der(X) ..ooveeeeeieeeee e BER1 128
Evaluate Deij (X) .. .vevurmrmrmiiriiiiiiiiiiiiiiiiiii e BEI1 129
Evaluate Ker (X)....ocueeeeiieeiiieee e AKER1 130
Evaluate Keij(X) .....uvurureinriiiiiiiiiiiiiiiiiiiiiiiiniinsnsnnnnnnnnnnennnnnnnnnens AKEI1 130

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964).
The Kelvin functions are related to the Bessel functions by the following
relations.
S e — 3mi/4
ber,x +ibei,x = J, (xe”™"'")
ker, x +ikei ,x = e /2K, (xe™4)

The derivatives of the Kelvin functions are related to the values of the Kelvin
functions by the following:

2ber{x = ber;x + bei; x
/2bei{yx = —ber;x + bei | x

V2keryx = ker;x + kei
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V2keipx = —keryx + kel

Plots of ber,(x), bei (), ker,(x) and kei,,(x) for n=0, 1 follow:

150.0

/5.0

Yy

0.0

—75.0

Function
| bei, —
_ ber, ---

bei, —
| ]

—— \ \\\
* ~_ /
N~ S
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0.0 2.0 4.0 6.0 8.0 10.0

Figure 7-1 Plot of ber,(x) and bei,(x)
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Figure 7-2 Plot of ker,(x) and kei,(x)

BERO/DBERO (Single/Double precision)

Evaluate the Kelvin function of the first kind, ber, of order zero.

Usage
BERO( X)
Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

BERO — Function value. (Output)

Algorithm

The Kelvin function bex) is defined to bélJ,(xe™"*). The Bessel function
Jy(X) is defined irBSJ0 (page 84). FunctioBERO is based on the work of
Burgoyne (1963).
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Example

In this example, ber,(0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL BERO, VALUE, X
EXTERNAL BERO, UNMACH
C Comput e
X = 0.4
VALUE = BERO(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( BERO(, F6.3, ") =*, F6.3)
END

Output
BERO( 0.400) = 1.000

BEIO/DBEIO (Single/Double precision)

Evaluate the Kelvin function of the first kind, bei, of order zero.

Usage
BEIO(X)

Arguments

X — Argument for which the function value is desired. (Input)
ABS(X) must be less than 119.

BEIO — Function value. (Output)

Algorithm

The Kelvin function bg(x) is defined to b&J,(xe’™"). The Bessel function

Jy(X) is defined inBSJO (page 84). FunctioBEIl 0 is based on the work of
Burgoyne (1963).

In BEI 0, x must be less than 119.

Example

In this example, bg(0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL BEI 0, VALUE, X
EXTERNAL BEI 0, UMACH
C Conput e
X =0.4
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VALUE = BEI 0( X)
C Print the results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' BEIO(', F6.3,") =", F6.3)
END

Output
BEIO( 0.400) = 0.040

AKERO/DKERO (Single/Double precision)

Evaluate the Kelvin function of the second kind, ker, of order zero.

Usage
AKERO(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKERO — Function value. (Output)

Algorithm

The modified Kelvin function kg(x) is defined to b&K,(xe""*). The Bessel

functionK(x) is defined irBSKO (page 92). FunctioAKERO is based on the work
of Burgoyne (1963). Ik < 0, then NaN (not a number) is returneck # 119,
then zero is returned.

Example

In this example, kg(0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL AKERO, VALUE, X
EXTERNAL AKERO, UMACH
C Comput e
X = 0.4
VALUE = AKERO( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' AKERO(, F6.3,") =, F6.3)
END

Output
AKERO( 0.400) = 1.063
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AKEIO/DKEIO (Single/Double precision)

Evaluate the Kelvin function of the second kind, kei, of order zero.

Usage
AKEI 0( X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative and less than 119.

AKEIO — Function value. (Output)

Algorithm

The modified Kelvin function kefx) is defined to bé&lK,(x€""*). The Bessel
functionK(x) is defined irBSKO (page 92). FunctioAKEI 0 is based on the work
of Burgoyne (1963).

In AKEI 0, x must satisfy & x < 119. Ifx < 0, then NaN (not a number) is
returned. Ifx > 119, then zero is returned.
Example

In this example, kgf0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL AKEI 0, VALUE, X
EXTERNAL AKEI 0, UMACH
C Comput e
X = 0.4
VALUE = AKEI 0(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AKEIO(, F6.3,") =", F6.3)
END

Output
AKEIO( 0.400) = -0.704

BERPO/DBERPO (Single/Double precision)

Evaluate the derivative of the Kelvin function of the first kind, ber, of order zero.
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Cc

Cc

| NTEGER

REAL

EXTERNAL

X
VALUE

Usage

BERPO( X)

Arguments

X — Argument for which the function value is desired. (Input)
BERPO — Function value. (Output)

Algorithm

The function bég(x) is defined to be
d
— berg(x
& ero()

where bey(X) is a Kelvin function, seBERO (page 121). FunctioBERPO is based
on the work of Burgoyne (1963).

If [x| > 119, then NaN (not a number) is returned.

Example

In this example, b&y(0.6) is computed and printed.

Decl are vari abl es
NOUT
BERPO, VALUE, X
BERPO, UVACH

Conput e

0.6
BERPO( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BERPO(, F6.3,") =, F6.3)

END

Output

BERPO( 0.600) = -0.013

BEIPO/DBEIPO (Single/Double precision)

Evaluate the derivative of the Kelvin function of the first kind, bei, of order zero.

Usage
BEIPO(X)

Arguments

X — Argument for which the function value is desired. (Input)
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Cc

Cc

| NTEGER

REAL

EXTERNAL

X
VALUE

BEIPO — Function value. (Output)

Algorithm
The function béj(x) is defined to be
d .
— beig(x
& Pelo(¥

where bgj(x) is a Kelvin function, seBEl 0 (page 122). FunctioBEl PO is based
on the work of Burgoyne (1963).

If |x] > 119, then NaN (not a number) is returned.

Example

In this example, bg)0.6) is computed and printed.

Decl are vari abl es
NOUT
BEI PO, VALUE, X
BEI PO, UVACH

Conput e

0.6
BEI PO( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BEIPO(, F6.3,") =, F6.3)

END

Output

BEIPO( 0.600) = 0.300

AKERPO/DKERPO (Single/Double precision)

Evaluate the derivative of the Kelvin function of the second kind, ker, of order
zero.

Usage
AKERPO(X)

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKERPO — Function value. (Output)

Algorithm
The function ké(x) is defined to be
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d
— kern(X
o kero(x)

where ker,(x) isa Kelvin function, see AKERO (page 123). Function AKERPO is
based on the work of Burgoyne (1963). If x < 0, then NaN (not a number) is
returned. If x> 119, then zero is returned.

Example

In this example, ker',(0.6) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL AKERPO, VALUE, X
EXTERNAL AKERPO, UNMACH
C Comput e
X =0.6
VALUE = AKERPO( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AKERPO(, F6.3, ") =, F6.3)
END

Output
AKERPO( 0.600) = -1.457

AKEIPO/DKEIPO (Single/Double precision)

Evaluate the Kelvin function of the second kind, kei, of order zero.

Usage
AKEIPO(X)
Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKEIPO — Function value. (Output)

Algorithm

The function kéj(x) is defined to be

d .
— keig(x)
dx
where kej(x) is a Kelvin function, se8KEl PO (page 127). FunctiofAKE! PO is

based on the work of Burgoyne (1963).
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C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

0
A

If x <0, then NaN (not a number) isreturned. If x > 119, then zero isreturned.

Example

In this example, kei'((0.6) is computed and printed.

Decl are vari abl es
NOUT
AKEI PO, VALUE, X
AKEI PO, UMACH

Conput e

.6
KEI PO( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AKEIPO(, F6.3,") =", F6.3)

END

Output

AKEIPO( 0.600) = 0.348

BER1/DBER1 (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C

Evaluate the Kelvin function of the first kind, ber, of order one.

Usage
BER1(X)

Arguments
X — Argument for which the function value is desired. (Input)
BER1 — Function value. (Output)

Algorithm

The Kelvin function be(x) is defined to b&lJ, (x¢”™ ). The Bessel function

J (X) is defined inBSJ1 (page 86). FunctioBER1 is based on the work of
Burgoyne (1963).

If |x] > 119, then NaN (not a number) is returned.

Example

In this example, bef0.4) is computed and printed.

Decl are vari abl es
NOUT
BER1, VALUE, X
BER1, UMACH

Comput e
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X 0.4
VALUE = BERL(X)
C Print the results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) X, VALUE
99999 FORMAT (' BER1(, F6.3,") =", F6.3)
END

Output
BER1( 0.400) = -0.144

BEI1/DBEI1 (Single/Double precision)

Evaluate the Kelvin function of the first kind, bei, of order one.

Usage
BEI1(X)

Arguments
X — Argument for which the function value is desired. (Input)

BEI1 — Function value. (Output)

Algorithm

The Kelvin function bg{x) is defined to bé&lJ, (x&’*7*). The Bessel function

J (X) is defined inBSJ1 (page 86). FunctioBEl 1 is based on the work of
Burgoyne (1963).

If |x] > 119, then NaN (not a number) is returned.

Example

In this example, bg(0.4) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL BElI 1, VALUE, X
EXTERNAL BEI 1, UVMACH
C Comput e
X = 0.4
VALUE = BEI 1( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' BEI1(, F6.3,’) =, F6.3)
END

Output
BEI1( 0.400) = 0.139
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AKER1/DKER1 (Single/Double precision)

C

C

| NTEGER

REAL

EXTERNAL

X
VALUE

Evaluate the Kelvin function of the second kind, ker, of order one.

Usage
AKERL( X)

Arguments

X — Argument for which the function valueisdesired. (Input)
It must be nonnegative.

AKER1 — Function value. (Output)

Algorithm

The modified Kelvin function ke(x) is defined to be €*0K, (xe*"*). The
Bessel functior; (x) is defined inBSK1 (page 93). FunctioAKERL is based on
the work of Burgoyne (1963).

If x< 0, then NaN (not a number) is returned # 119, then zero is returned.

Example

In this example, ke€0.4) is computed and printed.

Decl are vari abl es
NOUT
AKER1, VALUE, X
AKER1, UMACH

Comput e

0.4
AKERL( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( AKER1(, F6.3,") =, F6.3)

END

Output

AKER1( 0.400) = -1.882

AKEI1/DKEI1 (Single/Double precision)

Evaluate the Kelvin function of the second kind, kei, of order one.

Usage
AKEI1(X)
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C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

Arguments

X — Argument for which the function value is desired. (Input)
It must be nonnegative.

AKEI1 — Function value. (Output)
Algorithm

The modified Kelvin function kefx) is defined to be 8”2 0K, (x&" ™). The
Bessel functior; (x) is defined inBSK1 (page 93). FunctioAKERL is based on
the work of Burgoyne (1963).

If x< 0, then NaN (not a number) is returned # 119, then zero is returned.

Example

In this example, kef0.4) is computed and printed.

Decl are vari abl es
NOUT
AKER1, VALUE, X
AKER1, UMACH

Conput e

0.4
AKERL( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AKER1(, F6.3,") =’, F6.3)

END

Output

AKER1( 0.400) = -1.882
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Chapter 8: Airy Functions

Routines
EVAIUALE AI(X) .ottt Al 133
EVAIUALE Bi(X) ..oeiiiieeiieiieee ettt BI 134
EVAIUALE AI'(X) .ereeeiiiiiie ittt AID 135
EVAIUALE Bi'(X) .erreeiviieieiiiiiiie et BID 136
Evaluate exponentially scaled Ai(X) .....ccoeeeerieiiiiieieeeeesiiiiieeenn. AIE 137
Evaluate exponentially scaled Bi(X) .......cccevvveeveeeriiiiiiiiiiiiiienenen, BIE 138
Evaluate exponentially scaled Al (X)......ccccoevummmmmmmrmnmmmninnnnnnnnn. AIDE 139
Evaluate exponentially scaled Bi'(X).......ccccoeummmmmminnnmmmnininnnnnnn. BIDE 140

Al/DAI (Single/Double precision)

Evaluate the Airy function.

Usage
Al (X)

Arguments

X — Argument for which the Airy function is desired. (Input)

Al — Function value. (Output)

Comments

Informational error

Type Code
2 1

Algorithm

The function underflows becaaX is greater thaXMax, where

XMAX = (~3/2 In(AMACH(1)))*".

The Airy function A{(x) is defined to be
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Cc

. 1 (e 1 3) X (2 3/2)
Ai(X)==—| cod xt+=t° |dt = /—K —X
(%) T[J-O S( 3 3? s 3

The Bessel function K (X) is defined in BSKS (page 109).

If x < —1.316 >, then the answer will have no precision. If x < -1.31e" ", the
answer will be less accurate than half precision. Here, € = AMACH(4) is the
machine precision. Finally, x should be less than x,,,, o the answer does not

underflow. Very approximately, X,..,, = {~1.5In 5>, where s= AMACH( 1) , the
smallest representabl e positive number. If underflows are a problem for large x,
then the exponentially scaled routine Al E (page 137) should be used.

Example

In this example, Ai(—4.9) is computed and printed.

Decl are vari abl es
| NTEGER NOUT
REAL Al, VALUE, X
EXTERNAL Al , UMACH

Conput e
X
VALUE

-4.9
Al (X)

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE

Print the results

99999 FORMAT ( Al(, F6.3,") =, F6.3)

END

Output

Al(-4.900) = 0.375

BI/DBI (Single/Double precision)

Evaluate the Airy function of the second kind.

Usage

BI(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

Bl — Function value. (Output)

Algorithm
The Airy function of the second kind B)(is defined to be
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. 1 1 3 1o . 1 3
= - + — +—
Bi(x) njo exp(xt 3t ]dt T['[O sn(xt 3t )dt
It can also be expressed in terms of modified Bessel functions of the first kind,

I,(X), and Bessel functions of the first kind, J,(x) (see BSI S, page 106, and BSJS,
page 103):

: X 2 3/2) (2 3/2)}
Bi(X)=_.—=|1_qal =X +1 —X for x>0
(x) ,/3[ 113(3 u3( 3
and
o 2 3/2) (2 3/2)}
Bi(xX)=_[—= | J_q/2| =|X —Jqja| =X for x<0
()1/3[ 1/3(3|| 13 3||

Let € = AMACH(4), the machine precision. If x < -1.31 %", then the answer will

have no precision. If x < -1.31¢™' ", the answer will be less accurate than half
precision. In addition, x should not be so large that exp[(2/3)x] overflows. If
overflows are a problem, consider using the exponentially scaled form of the Airy
function of the second kind, Bl E (page 138), instead.

Example

In this example, Bi(—4.9) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL Bl , VALUE, X
EXTERNAL BI, UMACH
C Conput e
X =-4.9
VALUE = BI (X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( BI(, F6.3,") =, F6.3)
END

Output
BI(-4.900) = -0.058

AID/DAID (Single/Double precision)

Evaluate the derivative of the Airy function.

Usage
AID(X)
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C

C

AID(-4.900) = 0.147

| NTEGER

REAL

EXTERNAL

X
VALUE

Arguments
X — Argument for which the Airy function value is desired. (Input)

AID — Function value. (Output)

Comments
Informational error
Type Code
2 1 The function underflows becaosis greater thaXMAX, where

XMAX = —3/2 IN(AMACH(1)).

Algorithm

The function Al(x) is defined to be the derivative of the Airy function,»i(see
Al , page 133).

If x<-1.31>", then the answer will have no precisiorx # -1.31" ", the
answer will be less accurate than half precision. HeredMACH(4) is the

machine precision. Finallx,should be less thagf,,, so that the answer does not
underflow. Very approximately,,., = {-1.5 Ins}, wheres = AMACH(1), the
smallest representable positive number. If underflows are a problem foglarge
then the exponentially scaled routileDE (page 139) should be used.

Example

In this example, A{-4.9) is computed and printed.

Decl are vari abl es
NOUT
Al D, VALUE, X
Al D, UVACH

Comput e

-4.9
Al X(X)

Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( AID(, F6.3, ) =, F6.3)

END

Output

BID/DBID (Single/Double precision)

Evaluate the derivative of the Airy function of the second kind.

Usage
BID(X)
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C

C

BID(-4.900) = 0.827

| NTEGER

REAL

EXTERNAL

X
VALUE

Arguments
X — Argument for which the Airy function value is desired. (Input)

BID — Function value. (Output)

Algorithm

The function Bi(x) is defined to be the derivative of the Airy function of the
second kind, BK) (seeBl , page 134).

If x<-1.31>", then the answer will have no precisiorx # -1.31c" ", the

answer will be less accurate than half precision. In addiishould not be so

large that exp[(2/3<f/2] overflows. If overflows are a problem, consider using
BI DE (page 140) instead. Here= AVACH(4) is the machine precision.

Example

In this example, B{—4.9) is computed and printed.

Decl are vari abl es
NOUT
Bl D, VALUE, X
BI D, UVACH

Comput e

-4.9
BI D(X)

Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT ( BID(, F6.3, ) =, F6.3)

END

Output

AIE/DAIE (Single/Double precision)

Evaluate the exponentially scaled Airy function.

Usage

AIE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

AIE — Function value. (Output)
The Airy function for negative arguments and the exponentially scaled Airy
function,e CAi(X), for positive arguments where
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Algorithm
The exponentially scaled Airy function is defined to be

Ai(x) ifx<0

AIE(x) = 312

23" Aj(x) ifx>0

If x < -1.31& >, then the answer will have no precision. If x < -1.31"" then
the answer will be less accurate than half precision. Here, € = AMACH(4) isthe
machine precision.

Example
In this example, Al E(0.49) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL Al E, VALUE, X
EXTERNAL Al E, UVACH
C Comput e
X = 0.49
VALUE = Al E(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( AIE(, F6.3, ") =, F6.3)
END

Output
AIE( 0.490) = 0.294

BIE/DBIE (Single/Double precision)

Evaluate the exponentially scaled Airy function of the second kind.

Usage
BIE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

BIE — Function value. (Output)
The Airy function of the second kind for negative arguments and the

exponentially scaled Airy function of the second kie?&i(x), for positive
arguments where
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Algorithm
The exponentially scaled Airy function of the second kind is defined to be

Bi(x) ifx<0

BIE(x) = 312

e 2B Bi(x) ifx>0

If x < -1.31& >, then the answer will have no precision. If x < -1.31"" then
the answer will be less accurate than half precision. Here, e = AMACH(4) isthe
machine precision.

Example
In this example, Bl E(0.49) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL Bl E, VALUE, X
EXTERNAL Bl E, UVACH
C Comput e
X = 0.49
VALUE = BI E(X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) X, VALUE
99999 FORMAT (' BIE(, F6.3, ) =, F6.3)
END

Output
BIE( 0.490) = 0.675

AIDE/DAIDE (Single/Double precision)

Evaluate the exponentially scaled derivative of the Airy function.

Usage

AIDE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially

scaled derivative of the Airy functioaC,Ai'(X), for positive arguments where

—__ 232
=-2x
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Cc

| NTEGER

REAL

EXTERNAL

X
VALUE

Algorithm
The exponentially scaled derivative of the Airy function is defined to be

Ai'(Xx) ifx<0

AIDE(X) = 312

2B Aj(x) ifx>0

If x < —1.31 ", then the answer will have no precision. If x < -1.31e™'”, then
the answer will be less accurate than half precision. Here, € = AMACH(4) isthe
machine precision.

Example

In this example, Al DE(0.49) is computed and printed.

Decl are vari abl es
NOUT
Al DE, VALUE, X
Al DE, UMACH

Conput e

0. 49
Al DE( X)

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' AIDE(, F6.3,") =, F6.3)

END

Output

AIDE( 0.490) = -0.284

BIDE/DBIDE (Single/Double precision)

Evaluate the exponentially scaled derivative of the Airy function of the second
kind.

Usage
BIDE(X)

Arguments

X — Argument for which the Airy function value is desired. (Input)

BIDE — Function value. (Output)
The derivative of the Airy function of the second kind for negative arguments and

the exponentially scaled derivative of the Airy function of the second &iBd,
(X), for positive arguments where

_ 232
7=-2X
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Algorithm

The exponentialy scaled derivative of the Airy function of the second kind is
defined to be

Bi'(x) ifx<0

BIDE(x) = 32
e 2B Bi(x) ifx>0

If x < —1.31€ ", then the answer will have no precision. If x < -1.31e™'”, then
the answer will be less accurate than half precision. Here, € = AMACH(4) isthe
machine precision.

Example
In this example, Bl DE(0.49) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL Bl DE, VALUE, X
EXTERNAL Bl DE, UVMACH
C Conput e
X = 0.49
VALUE = BI DE( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( BIDE(, F6.3,") =, F6.3)
END

Output
BIDE( 0.490) = 0.430
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Chapter 9: Elliptic Integrals

Routines

Evaluate the complete elliptic integral of the first kind, K(X)...... ELK 145
Evaluate the complete elliptic integral of the second kind,

E(X) ettt ELE 147
Evaluate Carlson’s elliptic integral of the first kind,

RE(X, Yy 2) oo ELRF 148
Evaluate Carlson’s elliptic integral of the second kind,

RD(Xy Vs Z) ettt ELRD 149
Evaluate Carlson’s elliptic integral of the third kind,

RAX, Yy Z) oottt ELRJ 150
Evaluate a special case of Carlson’s elliptic integral,

RO(X, Yy Z) e ELRC 151

Usage Notes

The notation used in this chapter follows that of Abramowitz and Stegun (1964)
and Carlson (1979).

The complete elliptic integral of thefirst kind is
-2

_ 2 )
K(m)—_[0 (1-msin®6)  d6
and the complete dliptic integral of the second kind is

E(m)= J’;T/Z(l— msi n26)1/2 de

Instead of the parameter m, the modular angle a is sometimes used withm = sin®
a. Also used is the modulus k with i = m.
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EK)=[ " (1-K? sin? 6) V2do
=R:(0,1-k?, 1)—%k2RD(O, 1-k?, 1)

Carlson Elliptic Integrals
The Carlson dlliptic integrals are defined by Carlson (1979) as follows:

e dt
Re(X, Y, 2) = 2'[0 [(t+x)(t+Y)(t+z)]]j2
i
Re(x y) = 2‘[0 [(t+ x)(t"')’)z]llz
3 oo dt
R (X! Y, Z p):_
3 ZJO [(t+x)(t+y)(t+z)(t+p)2]1/2
5. dt

Ro(X Y, 2)=—
p(X, ¥, Z 2,[0 [(t+x)(t+y)(t+z)3]1/2

The standard Legendre elliptic integrals can be written in terms of the Carlson
functions as follows (these relations are from Carlson (1979)):

F(@ )= [f1-K2sin26)  de
=(sin@)Re(cos” @, 1-k*sin® @, 1)
E(g, k)= j(‘)"(l— k2 sinze)ﬂz de
= (Sn@)Re(cos? g, 1-k? sin? @, 1)—%k2(sin(p)3 Ro (cos? @ 1-k?sin? g, 1)
M@ k n)=1{1+ nsinze)_l(l— k2sin%6) " de
=(sin@Re (cos? @, 1-k?sin? 1)—gk2(sin(p)3RD(cosz ¢, 1-k?sin? ¢, L+nsin? ¢)

-1/
2

D(¢, k, n) = ['sin”6(1-ksin?6) " d6

:%(sin(p)g’ Ry (cos” ¢, 1-k*sin” @, 1)
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K(k) = [ (1-K?sin8) V2 de
= Re(0,1-K?, 1)
E(K) = j(j”z(l— K2 sin? e)ﬂ2 de
1
= Re(0, 1—k2,1)—§k2RD(0,1—k2, 1)

The function R-(X, y) isrelated to inverse trigonometric and inverse hyperbolic

functions.
+
Inx =(x-1) RC[(lTX] x} 0<x<oo
sin7'x = xR, (1-x%,1) ~1sx<1
sinh™x = xRy(1+x7,1) —00 < X<00

cos'x=v1-x* Ry(x*,])  0s=xs<1
cosh ~x = +/x? —1Rc(x2,1) 1< x<o0

tan'lxszC(l,1+x2) —00 < X < 00
tanh'lxszC(l,l—xz) -1<x<l1
cot ™'x = Ry(x?, x* +1) 0<Xx<w
coth™x = I'-\’C(xz,x2 —1) 1< X<

ELK/DELK (Single/Double precision)

Evaluate the complete elliptic integral of the kind K(x).

Usage
ELK( X)
Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than 1.

ELK — Function value. (Output)
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Algorithm

The complete elliptic integral of the first kind is defined to be

doé

K(x) =

JT[/Z
0

forO<s x<1

[1— xsin? 9]1/2

The argument x must satisfy 0< x < 1; otherwise, ELK is set to b = AMACH(2), the

largest representabl e floating-point number.

The function K(x) is computed using the routine ELRF (page 148) and the relation

K(X) = R0, 1 - x, 1).

3.0 s
1 [ K(x) —
[|E(x) --
i /
2.5 — /
2.0 - //'
— /// -
1.5 -
1.0 \ [ — T I = \
0.0 0.25 0.5 0.75 1.0
Figure 9-1 Plot of K(x) and E(x)
Example

In this example, K(0) is computed and printed.

C
INTEGER  NOUT
REAL ELK, VALUE, X
EXTERNAL  ELK, UMACH
C
X = 0.0
VALUE = ELK(X)
C

CALL UMACH (2, NOUT)

Decl are vari abl es

Comput e

Print the results
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WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ELK(, F6.3,”) =, F6.3)

END

ELK( 0.000) = 1.571

Output

ELE/DELE (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C
X =
VALUE =
C

Evaluate the complete elliptic integral of the second kind E(X).

Usage
ELE(X)

Arguments

X — Argument for which the function value is desired. (Input)
X must be greater than or equal to 0 and less than or equal to 1.

ELE — Function value. (Output)

Algorithm
The complete elliptic integral of the second kind is defined to be
w2 . y2
E(x) = Jo [1—xsm2 e] dé forO<x<1
The argument must satisfy & x < 1; otherwiseELE is set tab = AVACH(2), the
largest representable floating-point number.

The functionE(X) is computed using the routinEsRF, page 148, anBLRD,
page 149. The computation is done using the relation

E(x) = Re (0, 1- %, 1)—% R (0, 1-x, 1)
For a plot ofE(x), see Figure 9.1 on page 146.

Example

In this exampleE(0.33) is computed and printed.

Decl are vari abl es
NOUT
ELE, VALUE, X
ELE, UVACH

Comput e

0.33
ELE( X)

Print the results

CALL UMACH (2, NOUT)
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WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT ( ELE(, F6.3,”) =, F6.3)

END

ELE( 0.330) = 1.432

Output

ELRF/DELRF (Single/Double precision)

C
| NTEGER
REAL
EXTERNAL
C

Evaluate Carlson’s incomplete elliptic integral of the first kadX, v, Z).

Usage
ELRF(X, Y, 2)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

ELRF — Function value. (Output)

Algorithm
The Carlson’s complete elliptic integral of the first kind is defined to be

1 o
RF(X, V2 Z) - 2_[0 [(t+x)(t+y)(t+z):|l/2

The arguments must be nonnegative and less than or edpfal o addition x +
y, X + z, andy + zmust be greater than or equal ® Should any of these
conditions fail ELRF is set tdh. Here,b = AMACH(2) is the largest and
S=AMACH(1) is the smallest representable floating-point number.

The functionELRF is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

In this exampleRA0, 1, 2) is computed and printed.

Decl are vari abl es
NOUT
ELRF, VALUE, X, Y, Z
ELRF, UMACH
Conput e
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X =0.0
Y = 1.0
Z =20
VALUE = ELRF(X, Y, 2)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, Y, Z, VALUE
99999 FORMAT ( ELRF(, F6.3,",, F6.3,",, F6.3,") =, F6.3)
END

Output
ELRF( 0.000, 1.000, 2.000) = 1.311

ELRD/DELRD (Single/Double precision)

Evaluate Carlson’s incomplete elliptic integral of the second Rs(&, Y, Z).

Usage
ELRD( X, Y, 2)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be positive.

ELRD — Function value. (Output)

Algorithm

The Carlson’s complete elliptic integral of the second kind is defined to be

3 (o dt
Ro(x, ¥, 2) = >
’ 2% [ext i+

The arguments must be nonnegative and less than or equal tdmeﬁlé%s
wheree = AMACH(4) is the machine precisios= AMACH(1) is the smallest
representable positive number. Furthermrrey andz must be greater than
max{3s**, 3b™*}, whereb = AMACH(2) is the largest floating-point number. If
any of these conditions are false, tiERD is set tdb.

The functionELRD is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).
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Example
In this example, Rp(0, 2, 1) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ELRD, VALUE, X, Y, Z
EXTERNAL ELRD, UMACH
C Conput e
X =0.0
Y =2.0
4 =1.0
VALUE = ELRD(X, Y, 2)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, Y, Z, VALUE
99999 FORMAT ( ELRD(, F6.3,",, F6.3,", F6.3,") =, F6.3)
END

Output
ELRD( 0.000, 2.000, 1.000) = 1.797

ELRJ/DELRJ (Single/Double precision)

Evaluate Carlson’s incomplete elliptic integral of the third KR)X, Y, Z, RHO)

Usage
ELRI(X, Y, Z, RHO

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

Z — Third variable of the incomplete elliptic integral. (Input)
It must be nonnegative.

RHO — Fourth variable of the incomplete elliptic integral. (Input)
It must be positive.

ELRJ — Function value. (Output)

Algorithm
The Carlson’s complete elliptic integral of the third kind is defined to be

3 oo at
Ri(x ¥,z p) =7
J 2 [+t +y)(t+2)(t+p)?]

v2
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C

| NTEGER

REAL

EXTERNAL

X

Y

z

RHO
VALUE

The arguments must be nonnegative. In addition, x +y, X + z, y + zand p must be

greater than or equal to (5s)'”* and less than or equal to .3(b/5)'?, where

S= AMACH(1) is the smallest representable floating-point number. Should any of
these conditions fail, ELRF is set to b = AMACH(2), the largest floating-point
number.

The function ELRJ is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

In this example, R/(2, 3, 4, 5) is computed and printed.
Decl are vari abl es

NOUT
ELRJ, RHO VALUE, X, Y, Z
ELRJ, UMACH
Comput e
0
0
0
0

ELRI(X, Y, Z, RHO

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, Y, Z, RHO, VALUE
99999 FORMAT ( ELRJ(, F6.3,",, F6.3, ", F6.3,",, F6.3,

Y= F6.3)
END

Output

ELRJ( 2.000, 3.000, 4.000, 5.000) = 0.143

ELRC/DELRC (Single/Double precision)

Evaluate an elementary integral from which inverse circular functions, logarithms
and inverse hyperbolic functions can be computed.

Usage
ELRC(X, Y)

Arguments

X — First variable of the incomplete elliptic integral. (Input)
It must be nonnegative and satisfy the conditions given in Comments.

Y — Second variable of the incomplete elliptic integral. (Input)
It must be positive and satisfy the conditions given in Comments.

ELRC — Function value. (Output)
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Comments

The sum X + Y must be greater than or equal to ARGM N and both X and Y must be
less than or equal to ARGVAX. ARGM N=s* 5 and ARGVAX = b/5, where sisthe
machine minimum (AMACH(1)) and b is the machine maximum (AMACH(2)).

Algorithm

The special case of Carlson’s complete elliptic integral of the first kind is defined
to be

_ 1 d
2P [+ +y

The argument must be nonnegativemust be positive, and+y must be less
than or equal t&/5 and greater than or equal t& B any of these conditions are
false, therELRC is set tdb. Here,b = AMACH(2) is the largest ansl= AMACH(1) is
the smallest representable floating-point number.

Re(X, Y)

)2]1/2

The functionELRF is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example
In this exampleR-(2.25, 2.0) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
REAL ELRF, VALUE, X, Y, Z
EXTERNAL ELRF, UMACH
C Conput e
X =0.0
Y =1.0
4 =2.0
VALUE = ELRF(X, Y, 2)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, Y, Z, VALUE
99999 FORMAT ( ELRF(, F6.3,",, F6.3,",, F6.3,") =, F6.3)
END

Output
ELRF( 0.000, 1.000, 2.000) = 1.311
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Chapter 10: Elliptic and Related
Functions

Routines

10.1. Weierstrass Elliptic and Related Functions
LemMNINSCALIC CASE ...ceeeeiiiiiiiiiieee ettt CWPL 154
Lemninscatic case derivative ...........cccccveveviiiiiiiiiiiiii CWPLD 155
EQUIannarmoniC CASE .........uuvurerrrereririreieerereererereeenenenenenennnes CWPQ 156
Equianharmonic case derivative .............cccocvvieeiiieneennnnn. CWPQD 157

10.2. Jacobi Elliptic Functions
Jacobi function sn(x, m) (real argument) ...........cccccovviivirennen. EJSN 158
Jacobi function sn(z, m) (complex argument) ...................... CEJSN 159
Jacobi function cn(x, m) (real argument) .........ccccccevevvveeenennn. EJCN 160
Jacobi function cn(z, m) (complex argument) ...........c.ccueee. CEJCN 162
Jacobi function dn(x, m) (real argument) ..........cccccvevvvevenernn. EJDN 163
Jacobi function dn(z, m) (complex argument)...................... CEJDN 164

Usage Notes

Elliptic functions are doubly periodic, single-valued complex functions of asingle
variable that are analytic, except at afinite number of poles. Because of the
periodicity, we need consider only the fundamental period parallelogram. The
irreducible number of poles, counting multiplicities, isthe order of the dliptic
function. The simplest, non-trivial, eliptic functions are of order two.

The Weierstrass elliptic functions, O (z, w, w') have adouble pole at z= 0 and so
are of order two. Here, 2w and 2w’ are the periods.

The Jacobi dliptic functions each have two simple poles and so are also of order
two. The period of the functionsis asfollows:

Function Periods
sn(x, m) 4K(m) 2iK'(m)
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cn(x, m) 4K(m) 4iK'(m)
dn(x, m) 2K(m) 4iK'(m)

The function K(m) is the complete elliptic integral, see ELK (page 145), and K'(m)
=K(1-m).

CWPL/ZWPL (Single/Double precision)

Evaluate the Weierstrass' function in the lemniscatic case for complex
argument with unit period parallelogram.

Usage
CWPL( 2)

Arguments
Z — Complex argument for which the function value is desired. (Input)

CWPL — Complex function value. (Output)

Algorithm

The Weierstrasd] function,O (2 =0 (z| w, w'), is an elliptic function of order
two with periods @ and 20 and a double pole at= 0. CWPL(Z) computes] (z |
W, W) with 20 =1 and 2’ =1i.

The input argument is first reduced to the fundamental parallelogranzof all
satisfying—1/2< 0z < 1/2 and-1/2< 0Oz < 1/2. Then, a rational approximation is
used.

All arguments are valid with the exception of the lattice pa@rtsn + ni, which
are the poles afwpL. If the argument is a lattice point, ther AMACH(2) , the
largest floating-point number, is returned. If the argument has modulus greater

than 1@, then NaN (not a number) is returned. Here AVACH(4) is the
machine precision.

FunctionCWpL is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this exampleld (0.25 + 0.2%) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CWPL, VALUE, Z
EXTERNAL CWPL, UMACH

C Conput e
4 (0.25, 0.25)
VALUE = CWPL(Z)

C Print the results
CALL UMACH (2, NOUT)
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WRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT ( CWPL(, F6.3,",, F6.3,") = (,
& F6.3,' ' F6.3,)

END

Output

CWPL( 0.250, 0.250) = ( 0.000,-6.875)

CWPLD/ZWPLD (Single/Double precision)

C
| NTEGER
COMPLEX
EXTERNAL
C
Z =
VALUE =

Evaluate the first derivative of the Weierstrass' I function in the lemniscatic
case for complex argument with unit period parallelogram.

Usage
CWPLD( Z2)

Arguments
Z — Complex argument for which the function value is desired. (Input)

CWPLD — Complex function value. (Output)

Algorithm

The Weierstrasg] function, (2) =0 (z| w, w'), is an elliptic function of order
two with periods & and 20" and a double pole at= 0. CWPLD(Z) computes the
derivative ofd (z| w, w') with 20w =1 and 2 =i. CWPL, page 154, computés
(z|w, ).

The input argument is first reduced to the fundamental parallelogranzof all
satisfying-1/2< 0z< 1/2 and-1/2< [0z < 1/2. Then, a rational approximation is
used.

All arguments are valid with the exception of the lattice panrtsn + ni, which
are the poles afWpL. If the argument is a lattice point, thies AVACH(2), the
largest floating-point number, is returned.

FunctionCWPLD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this examplelJ (0.25 + 0.2%) is computed and printed.

Decl are vari abl es
NOUT
CWPLD, VALUE, Z
CWPLD, UVACH

Comput e

(0.25, 0.25)
OWPLDY 2)
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C Print the results
CALL UMACH (2, NOUT)
VRl TE ( NOUT, 99999) Z, VALUE
99999 FORMAT (' CWPLD(, F6.3,",, F6.3,") = (,
& F6.3,",F6.3,7)
END

Output
CWPLD( 0.250, 0.250) = (36.054,36.054)

CWPQ/ZWPQ (Single/Double precision)

Evaluate the Weierstrass' [ function in the equianharmonic case for complex
argument with unit period parallelogram.

Usage

owQ 2)

Arguments

Z — Complex argument for which the function value is desired. (Input)

CWPQ — Complex function value. (Output)

Algorithm

The Weierstrass] function, (2) =0 (z| w, w'), is an elliptic function of order
two with periods & and 20" and a double pole at= 0. CWPQ(Z) computes] (z |
w, W) with

40 =1-i+/3and 4w’ =1+i/3

The input argument is first reduced to the fundamental parallelogranzof all
satisfying

-1/2<0z<1/2and -/3/4<0z<+/3/4

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points
z=m(1-iy3)+n(1+iy3)

which are the poles @WPQ. If the argument is a lattice point, thier AMACH(2),
the largest floating-point number, is returned. If the argument has modulus greater

than 1@, then NaN (not a number) is returned. Here,
€ = AMACH(4) is the machine precision.

FunctionCWPQis based on code by Eckhardt (1980). Also, see Eckhardt (1977).
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Cc

Example

In this example, [0 (0.25 + 0.14437567i) is computed and printed.

Decl are vari abl es
NOUT
CWQ VALUE, Z
CWPQ UMACH

Conput e

(0.25, 0.14437567)
OWPQ 2)

Print the results

CALL UMACH (2, NOUT)
VR TE (NOUT, 99999) Z, VALUE
99999 FORMAT ( CWPQ(, F6.3,",, F6.3,") = (,

F7.3,"),F7.3,))
END

Output

CWPQ( 0.250, 0.144) = ( 5.895,-10.216)

CWPQD/ZWPQD (Single/Double precision)

Evaluate the first derivative of the Weierstrass' [0 function in the equianharmonic
case for complex argument with unit period parallelogram.

Usage

CWPQD( Z)

Arguments

Z — Complex argument for which the function value is desired. (Input)
CWPQD — Complex function value. (Output)

Algorithm

The Weierstrass] function, (2) =0 (z| w, w'), is an elliptic function of order
two with periods & and 20" and a double pole at= 0. CWPQD(Z) computes the
derivative ofd (z| w, w') with

40 =1-i+/3and 4w’ =1+i/3
CWPQ, page 156, computés(z | w, ).

The input argument is first reduced to the fundamental parallelogranzof all
satisfying

-1/2<0z<1/2and —-/3/4<0z<+/3/4

Then, a rational approximation is used.

All arguments are valid with the exception of the lattice points
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z=m(1-iv3)+n(1+iy3)

which are the poles of CWPQ. If the argument is alattice point, then b = AMACH(2),
the largest floating-point number, is returned.

Function CWPQD is based on code by Eckhardt (1980). Also, see Eckhardt (1977).

Example

In this example, [0 (0.25 + 0.14437567i) is computed and printed.

C Decl are vari abl es
| NTEGER NOUT
COVPLEX CWPQD, VALUE, Z
EXTERNAL CWPQD, UMACH
C Comput e
Z (0.25, 0.14437567)
VALUE = CWPQ( 2)
C Print the results
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) Z, VALUE
99999 FORMAT (' CWPQD(, F6.3,",, F6.3,") = (,
& F6.3,"),F6.3,7))
END

Output
CWPQD( 0.250, 0.144) = ( 0.028,85.934)

EJSN/DEJSN (Single/Double precision)

Evaluate the Jacobi elliptic function sn(x, m).

Usage

EJSN(X, AM)

Arguments

X — Argument for which the function value is desired. (Input)
AM — Parameter of the elliptic functiomE kz). (Input)

EJSN — Function value. (Output)

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision bexause |

is too large.
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c

| NTEGER

REAL

EXTERNAL

AM
X
VALUE

3 5 Landen transform did not converge. Result may not be accurate.
This should never occur.
Algorithm

The Jacobi elliptic function sn(x, m) = sin ¢, where the amplitude @ is defined by
the following:

0 doe
0(1—msin2(9)

%

The function sn(x, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, sn(1.5, 0.5) is computed and printed.
Decl are vari abl es

NOUT
AM EJSN, VALUE, X
EJSN, UMACH
Conput e
0.5
1.5
EISN( X, AM

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, AM VALUE
99999 FORMAT ( EJSN(, F6.3,",, F6.3,") =*, F6.3)

END

Output

EJSN( 1.500, 0.500) = 0.968

CEJSN/ZEJSN (Single/Double precision)

Evaluate the complex Jacobi elliptic function sn(z, m).

Usage

CEJSN(Z, AM)

Arguments

Z — Complex argument for which the function value is desired. (Input)

AM — Real parameter of the elliptic functiom € kz). (Input)
CEJSN — Complex function value. (Output)
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Comments

Informational errors

Type Code
3 2 Theresult is accurate to less than one half precision because
[REAL (Z)| istoo large.
3 3 Theresult is accurate to less than one half precision because
[Al MAG (2)| istoo large.
3 5 Landen transform did not converge. Result may not be accurate.
This should never occur.
Algorithm
The Jacobi éliptic function sn(z, m) = sin @, where the amplitude ¢ is defined by
the following:
® de
0 .
(1 —-msin 26)y2

The function sn(z, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter issmall. The
small parameter approximation is then applied.

Example
In this example, sn(1.5 + 0.3i, 0.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL AM

COWPLEX CEJSN, VALUE, Z
EXTERNAL CEJSN, UMACH

C Comput e
Z = (1.5 0.3
AM =0.5
VALUE = CEJSN(Z, AM
C Print the results

CALL UMACH (2, NaUT)
WRI TE (NQUT, 99999) Z, AM VALUE
99999 FORMAT (' CEJSN((’, F6.3,",, F6.3,"), ", F6.3,") = (,
& F6.3,",F6.3,7)
END

Output
CEJSN(( 1.500, 0.300), 0.500) = ( 0.993, 0.054)

EJCN/DEJCN (Single/Double precision)

Evaluate the Jacobi eliptic function cn(x, m).

160 « Chapter 10: Elliptic and Related Functions IMSL MATH/LIBRARY Special Functions



c

| NTEGER

REAL

EXTERNAL

AM
X
VALUE

Usage

EICN( X, AM

Arguments

X — Argument for which the function value is desired. (Input)
AM — Parameter of the elliptic functiom(E=k?). (Input)

EJCN — Function value. (Output)

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision bexause |
is too large.
3 5 Landen transform did not converge. Result may not be accurate.
This should never occur.
Algorithm

The Jacobi elliptic function cr(m) = cos@, where the amplitudg is defined by
the following:

0 doe
0(1—msin2(9)

X =

%

The function crX, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parametarjs between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, cn(1.5, 0.5) is computed and printed.
Decl are vari abl es

NOUT
AM EJCN, VALUE, X
EJCN, UMACH
Conput e
0.5
1.5
EICN( X, AM

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, AM VALUE
99999 FORMAT (' EJCN(, F6.3,",, F6.3,") =, F6.3)

END
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Output

EJON( 1.500, 0.500) = 0.250

CEJCN/ZEJCN (Single/Double precision)

| NTEGER
REAL
COWPLEX

Evaluate the complex Jacobi elliptic integral cn(z, m).

Usage

CEJCN(Z, AM

Arguments

Z — Complex argument for which the function value is desired. (Input)
AM — Parameter of the elliptic integrahE k?).  (Input)

CEJCN — Complex function value. (Output)

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision because
[REAL (2)] is too large.
3 3 The result is accurate to less than one half precision because
[Al MAG (2)] is too large.
3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.

Algorithm

The Jacobi elliptic function ce(m) = cosg, where the amplitudeis defined by
the following:

0] do

0(1—msin2(9)

%

The function crd, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parametarjs between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In this example, cn(1.5 + 0,3.5) is computed and printed.

Decl are vari abl es
NOUT
AM
CEJCN, VALUE, Z
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EXTERNAL CEJCN, UMACH

C Conmput e
Z = (1.5, 0.3)
AM = 0.5
VALUE = CEICN(Z, AM
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, AM VALUE
99999 FORMAT (' CEJCN((, F6.3,",, F6.3,),", F6.3,) = (,
& F6.3,' F6.3,")
END

Output
CEJCN(( 1.500, 0.300), 0.500) = ( 0.251,-0.212)

EJDN/DEJDN (Single/Double precision)

Evaluate the Jacobi €elliptic function dn(x, m).

Usage

EJDN(X, AM)

Arguments

X — Argument for which the function value is desired. (Input)

AM — Parameter of the elliptic functiom(= kz). (Input)
EJDN — Function value. (Output)

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision bedause |
is too large.
3 5 Landen transform did not converge. Result may not be accurate.
This should never occur.
Algorithm

The Jacobi elliptic function dr{m) = (1 - msir? @)'”?, where the amplitudeis
defined by the following:

0 doe
0(1—msin2(9)

%

The function drX, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameterjs between zero and one. Then, a
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descending Landen (Gauss) transform is applied until the parameter is small. The

small parameter approximation is then applied.

Example
In this example, dn(1.5, 0.5) is computed and printed.
C Decl are vari abl es
| NTEGER NOUT
REAL AM EJDN, VALUE, X
EXTERNAL EJDN, UVMACH
C Conput e
AM = 0.5
X =1.5
VALUE = EJDN( X, AM
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, AM VALUE
99999 FORMAT (' EJDN(, F6.3,",", F6.3,") =, F6.3)
END

Output
EJDN( 1.500, 0.500) = 0.729

CEJDN/ZEJDN (Single/Double precision)

Evaluate the complex Jacobi elliptic integral dn(z, m).

Usage
CEJDN(Z, AM)

Arguments

Z — Complex argument for which the function value is desired. (Input)

AM — Parameter of the elliptic integrah& kz). (Input)
CEJDN — Complex function value. (Output)

Comments
Informational errors
Type Code
3 2 The result is accurate to less than one half precision because
[REAL (2)] is too large.
3 3 The result is accurate to less than one half precision because
[Al MAG (2)] is too large.
3 5 Landen transform did not converge. Result may not be accurate.

This should never occur.
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C

| NTEGER

Algorithm

1/2

The Jacobi dliptic function dn(z, m) = (1 - m sin’® @ ), where the amplitude @is

defined by the following:
(0 de

0(1—msin2(9)

Z=

%

The function dn(z, m) is computed by first applying, if necessary, a Jacobi
transformation so that the parameter, m, is between zero and one. Then, a
descending Landen (Gauss) transform is applied until the parameter is small. The
small parameter approximation is then applied.

Example

In thisexample, dn(1.5 + 0.3i, 0.5) is computed and printed.
Decl are vari abl es

NOUT

AM

CEJDN, VALUE, Z

CEJDN, UNMACH

Conput e

(1.5, 0.3)
0.5
CEJDN(Z, AV

Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) Z, AM VALUE
99999 FORMAT (' CEJDN((, F6.3,",, F6.3,"), ", F6.3,) = (,

F6.3,",, F6.3,))
END

Output

CEJDN(( 1.500, 0.300), 0.500) = ( 0.714,-0.037)
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Chapter 11: Probability Distribution
Functions and Inverses

Routines

11.1. Discrete Random Variables: Distribution Functions and Probability
Functions
Binomial distribution funCtion .............coeeieiiiiiiiii e, BINDF 172
Binomial probability ............cevvviviiiiiiiiiiiiiiiie BINPR 173
Hypergeometric distribution function..............cccooin. HYPDF 175
Hypergeometric probability ............cccvvvveviiiiiiiiiiiiiiieeeieieeee, HYPPR 177
Poisson distribution function ..............ccccociiiiiiiiiiiicie POIDF 178
Poisson probability ...........cccoociiiiiiii POIPR 180

11.2. Continuous Random Variables: Distribution Functions and Their
Inverses
Kolmogorov-Smirnov one-sided statistic
distribution fUNCLION .....cooeeiieie e AKS1DF 181
Kolmogorov-Smirnov two-sided statistic
distribution fUNCLION .....ceeee e AKS2DF 184
Normal (Gaussian) distribution function............................ ANORDF 186
Inverse of the normal distribution function ......................... ANORIN 188
Beta distribution funCtion...........ccoeviiiiiiiiiee e, BETDF 189
Inverse of the beta distribution function..........cccoocevvvvvvvnnnne... BETIN 191
Bivariate normal distribution function............cccoevvveeeiiiinnnenn. BNRDF 192
Chi-squared distribution function ............ccccccvveeeiiiiiiiieneeeenn, CHIDF 193
Inverse of the chi-squared distribution function .................... CHIIN 196
Noncentral chi-squared distribution function....................... CSNDF 197
F distribution fUNCHION ........covvviii e, FDF 200
Inverse of the F distribution fuNCtioN ............cooevvviveeiiiiiiiiiiii, FIN 201
Gamma distribution fUNCLioN ...........cooevvveiiiiiiie e GAMDF 203
Student’s t distribution fUNCLION .........coovvviiiiiiiieeee e, TDF 205
Inverse of the Student’s t distribution function ..............ccccecooee. TIN 207
Noncentral Student’s t distribution function...............cceeee. TNDF 208
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11.3. General Continuous Random Variables
Distribution function given ordinates of density ..................... GCDF 210
Inverse of distribution function given ordinates of density...... GCIN 212

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the routinesin

this chapter are written for standard forms of statistical distributions. Hence, the

number of parameters for any given distribution may be fewer than the number

often associated with the distribution. For example, while agammadistribution is

often characterized by two parameters (or even a third, “location”), there is only
one parameter that is necessary, the “shape.” The “scale” parameter can be used
to scale the variable todlstandard gamma distributin. For another example, the
functions relating to the normal distributioNORDF (page 186) and ANORI N

(page 188), are for a normal distribution with mean equal to zero and variance
equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root
of the variance.

The distribution function for the (real, single-valued) random vare}lis the
function F defined for all relbx by

F(X) = ProfX < x)

where Profl)ldenotes the probability of an event. The distribution function is
often called theumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The routines in this chapter return the correct values for the distribution functions
when values outside of the range of the random variable are input, but warning
error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is calleglgiobability function, defined by

p(x) = ProfX =x)
The “PR’ routines in this chapter evaluate probability functions.

The CDF for a discrete random variable is

F(0# S p(k)
A
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where A isthe set such that k < x. The ‘DF” routines in this chapter evaluate
cumulative distributions functions. Since the distribution function is a step
function, its inverse does not exist uniquely.

1.00 — E—

0.75

. DF
0.50 —

Probability

F? ’:

0.25

0.00 | | |

Figure 11-1 Discrete Random Variable

In the plot above, a routine lik& NPR (page 173) in this chapter evaluates the
individual probability, giverK. A routine likeBI NDF (page 172) would evaluate
the sum of the probabilities up to and including the probabili¥; at
Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is thEeobability density function (PDF). The integral of the

PDF is the probability over the interval; if the continuous random varkahbes
PDFf, then

b
Prob(a< X < b) = ja f(x) dx
The relationship between the CDF and the PDF is
F(x) = [ f(t)at

as shown below.
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Figure 11-2 Probability Density Function

The “DF” routines for continuous distributions in this chapter evaluate cumulative
distribution functions, just as the ones for discrete distributions.

For (absolutely) continuous distributions, the valu€@) uniquely determines x
within the support of the distribution. TheN’ routines in this chapter compute
the inverses of the distribution functions; that is, givér) (called ‘P” for
“probability”), a routine likeBETI N (page 191) computes The inverses are
defined only over the open interval (O, 1).
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Figure 11-3 Cumulative Probability Distribution Function

There are two routinesin this chapter that deal with general continuous
distribution functions. The routine GCDF (page 210) computes a distribution
function using values of the density function, and the routine GCI N (page 212)
computes the inverse. These two routines may be useful when the user has an
estimate of a probability density.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function
or isto beinput to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(asthe normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using ANORI N (page 188) directly, the result
to six placesis 0.999968. Only two of those digits are really useful, however. A
more useful result may be 1.000000 minus this value, which can be obtained to
six significant figures as 3.16713E-05 by evaluating ANORI N at

—4.0. For the normal distribution, the two values arerelated by d(x) = 1 — d(—x),
where d([Jis the normal distribution function. Another example is the beta
distribution with parameters 2 and 10. This distribution is skewed to the right; so
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evaluating BETDF at 0.7, we obtain 0.999953. A more precise result is obtained
by evaluating BETDF with parameters 10 and 2 at 0.3. Thisyields 4.72392E-5.
(In both of these examples, it iswise not to trust the last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The a gorithms make use of various expansions
and recursive relationships, and often use different methods in different regions.

Cumulative distribution functions are defined for al real arguments; however, if

the input to one of the distribution functionsin this chapter is outside the range of

the random variable, an error of Type 1 isissued, and the output is set to zero or

one, as appropriate. A Type 1 error is of lowest severity, a “note;” and, by

default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert,” for a function value
being set to zero due to underflow; Type 3, “warning,” for considerable loss of
accuracy in the result returned; and Type 5, “terminal,” for incorrect and/ or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code, obtained by IMSL
routineAVACH(6) (page 240)). (See the section “User Errors” in the Reference
Material.)

BINDF/DBINDF (Single/Double precision)

Evaluate the binomial distribution function.

Usage
BINDF(K, N, P)

Arguments

K — Argument for which the binomial distribution function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINDF — Function value, the probability that a binomial random variable takes
a value less than or equalko (Output)

Bl NDF is the probability thai or fewer successes occumMiindependent

Bernoulli trials, each of which hasPgrobability of success.

Comments
Informational errors
Type Code
1 3 The input argumen, is less than zero.
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1 4 The input argument, K, is greater than the number of Bernoulli
trials, N.

Algorithm

Function BI NDF evaluates the distribution function of abinomia random variable
with parameters n and p. It does this by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship
L _(n+1-j :
Pr(X =) SULE )2 J)'OF’r(X =i-1
ja-p)
To avoid the possibility of underflow, the probabilities are computed forward
from O, if kis not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, €, is used as the starting value

for summing the probabilities, which are rescaled by (1 — p) "¢ if forward
computation is performed and by p”¢ if backward computation is done.

For the special case of p =0, Bl NDF isset to 1; and for thecase p = 1, BI NDF is
setto 1if k=nandto O otherwise.

Example

Suppose X is abinomia random variable withn =5 and p = 0.95. In this
example, we find the probability that X isless than or equal to 3.
| NTEGER K, N, NoUT

REAL BI NDF, P, PR
EXTERNAL Bl NDF, UVACH

C
CALL UMACH (2, NOUT)
K =3
N =5
P =0.95
PR = BI NDF(K, N, P)

VWRI TE (NQUT, 99999) PR
99999 FORMAT (' The probability that X is less than or equal to 3 is”’
& , F6.4)
END

Output
The probability that X is less than or equal to 3 is 0.0226

BINPR/DBINPR (Single/Double precision)

Evaluate the binomial probability function.

Usage
BINPR(K, N, P)
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Arguments

K — Argument for which the binomial probability function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINPR — Function value, the probability that a binomial random variable takes
a value equal t&. (Output)

Comments
Informational errors
Type Code
1 3 The input argumen, is less than zero.
1 4 The input argumeny, is greater than the number of Bernoulli
trials, N.
Algorithm

The functionBl NPR evaluates the probability that a binomial random variable

with parametera andp takes on the value It does this by computing

probabilities of the random variable taking on the values in its range less than (or
the values greater thak) These probabilities are computed by the recursive
relationship

(n+1-j)p
ji-p
To avoid the possibility of underflow, the probabilities are computed forward

from O, ifk is not greater than timesp, and are computed backward from
otherwise. The smallest positive machine nundyes, used as the starting value

Pr(X =)= Pr(X=j-1)

for computing the probabilities, which are rescaled by )¢ if forward

computation is performed and pye if backward computation is done.
For the special case pf= 0,BI NPRis set to 0 ik is greater than 0 and to 1

otherwise; and for the cape= 1,BI NPRis set to 0 ik is less tham and to 1
otherwise.
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Figure 11-4 Binomial Probability Function
Example

Suppose X isabinomial random variable withn =5 and p = 0.95. In this
example, we find the probability that X is equal to 3.
| NTEGER K, N, NOUT

REAL BI NPR, P, PR
EXTERNAL Bl NPR, UVACH

C
CALL UMACH (2, NOUT)
K =3
N =5
P =0.95
PR = BI NPR(K, N, P)

VWRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 3 is ', F6.4)
END

Output
The probability that X is equal to 3 is 0.0214

HYPDF/DHYPDF (Single/Double precision)

Evaluate the hypergeometric distribution function.
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Usage
HYPDF(K, N, M L)

Arguments

K — Argument for which the hypergeometric distribution function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equaNlandm

HYPDF — Function value, the probability that a hypergeometric random
variable takes a value less than or equ#l to(Output)

HYPDF is the probability thak or fewer defectives occur in a sample of $ize
drawn from a lot of size that contains/defectives.

Comments
Informational errors
Type Code
1 5 The input argumery, is less than zero.
1 6 The input argumerx, is greater than the sample size.
Algorithm

The functionHYPDF evaluates the distribution function of a hypergeometric
random variable with parameterd, andm. The hypergeometric random
variableX can be thought of as the number of items of a given type in a random
sample of siza that is drawn without replacement from a population oflsize
containingm items of this type. The probability function is

n-j

Pr(X =) :m forj=i,i+Li+2, ..., min(n,m)
o
wherei = max(0,n— | + m).

If kis greater than or equal it@nd less than or equal to min(), HYPDF sums
the terms in this expression fogoing fromi up tok. Otherwise HYPDF returns O
or 1, as appropriate. So, as to avoid rounding in the accumuletiBDE
performs the summation differently depending on whether drisajreater than
the mode of the distribution, which is the greatest integenin 1)(n + 1)/( + 2).
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Example

Suppose X is a hypergeometric random variable with n = 100, | = 1000, and
m = 70. In this example, we evaluate the distribution function at 7.
| NTEGER K. L M N NOUT

REAL DF, HYPDF
EXTERNAL HYPDF, UVACH

C
CALL UMACH (2, NOUT)
K =7
N = 100
L = 1000
M =70
DF = HYPDF(K, N, M L)

VWRI TE ( NOUT, 99999) DF
99999 FORMAT (' The probability that X is less than or equal to 7 is”’
& , F6.4)
END

Output
The probability that X is less than or equal to 7 is 0.5995

HYPPR/DHYPPR (Single/Double precision)

Evaluate the hypergeometric probability function.

Usage
HYPPR(K, N, M, L)

Arguments

K — Argument for which the hypergeometric probability function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or eq«al to

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equaNtandm

HYPPR — Function value, the probability that a hypergeometric random variable
takes a value equal €0 (Output)

HYPPR is the probability that exactly defectives occur in a sample of size

drawn from a lot of size that containg1defectives.

Comments
Informational errors
Type Code
1 5 The input argumerx, is less than zero.
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1 6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPPR eval uates the probability function of a hypergeometric
random variable with parametersn, |, and m. The hypergeometric random
variable X can be thought of as the number of items of agiven type in arandom
sample of size n that is drawn without replacement from a population of sizel
containing mitems of this type. The probability functionis

m\/l-m
Pr(X:k):M fork=i,i+1i+2, ... min(n,m)

o
wherei = max(0, n—1 + m).

HYPPR eval uates the expression using log gamma functions.

Example

Suppose X is a hypergeometric random variable with n = 100, | = 1000, and m=
70. In this example, we evaluate the probability function at 7.
| NTEGER K, L, M N NOUT

REAL HYPPR, PR
EXTERNAL HYPPR, UVACH

C
CALL UMACH (2, NOUT)
K =7
N = 100
L = 1000
M =70
PR = HYPPR(K, N, M L)

WRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ’, F6.4)
END

Output
The probability that X is equal to 7 is 0.1628

POIDF/DPOIDF (Single/Double precision)

Evaluate the Poisson distribution function.

Usage
POIDF(K, THETA)
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Arguments
K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIDF — Function value, the probability that a Poisson random variable takes a
value less than or equalko (Output)

Comments
Informational error
Type Code
1 1 The input argumerx, is less than zero.
Algorithm

The functionPO DF evaluates the distribution function of a Poisson random
variable with parametdHETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (viith THETA) is

f)=e’0%x, forx=0, 1, 2,...
The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summe®d DF uses the recursive relationship
f(x + 1) =f(x)0/(x + 1), forx=10, 1, 2,..., k-1
with f(0) =e™.

Example

SupposeX is a Poisson random variable wihkr 10. In this example, we evaluate
the distribution function at 7.
| NTEGER K, NOUT

REAL DF, PO DF, THETA
EXTERNAL PO DF, UVACH

C
CALL UMACH (2, NOUT)
K =7
THETA = 10.0
DF = PO DF(K, THETA)

VR TE ( NOUT, 99999) DF
99999 FORMAT (' The probability that X is less than or equal to ’,
& '7is’, F6.4)
END

Output
The probability that X is less than or equal to 7 is 0.2202
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POIPR/DPOIPR (Single/Double precision)

Evaluate the Poisson probability function.

Usage
PO PR(K, THETA)

Arguments
K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIPR — Function value, the probability that a Poisson random variable takes a
value equal t&. (Output)

Comments
Informational error
Type Code
1 1 The input argumery, is less than zero.
Algorithm

The functionPO PR evaluates the probability function of a Poisson random
variable with parameta@HETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (viith THETA) is

f(k) = e 0%k, fork =0, 1, 2,...

PO PR evaluates this function directly, taking logarithms and using the log
gamma function.
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Figure 11-5 Poisson Probability Function
Example

Suppose X is a Poisson random variable with 8 = 10. In this example, we evaluate
the probability function at 7.
| NTEGER K, NOUT

REAL PO PR, PR, THETA
EXTERNAL PO PR, UVACH

C
CALL UMACH (2, NOUT)
K =7
THETA = 10.0
PR = PO PR(K, THETA)

VWRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ’, F6.4)
END

Output
The probability that X is equal to 7 is 0.0901

AKS1DF/DKS1DF (Single/Double precision)

Evaluate the distribution function of the one-sided Kolmogorov-Smirnov
goodness of fit D" or D™ test statistic based on continuous data for one sample.
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Usage
AKS1DF( NOBS, D)

Arguments

NOBS — The total number of observations in the sample. (Input)

D — TheD" or D test statistic. (Input)

Dis the maximum positive difference of the empirical cumulative distribution
function (CDF) minus the hypothetical CDF or the maximum positive difference
of the hypothetical CDF minus the empirical CDF.

AKSI1DF — The probability of a smalléd. (Output)

Comments
1. Automatic workspace usage is

AKS1DF 3* (NOBS + 1) units, or
DKS1DF 6 * (NOBS + 1) units.

Workspace may be explicitly provided, if desired, by use of
AK21DF/DK21DF. The reference is

AK2DF(NOBS, D, WK)
The additional argument is

WK — Work vector of length 3 NOBS + 3 if NOBS < 80. VK is not used
if NOBS is greater than 80.

2. Informational errors
Type Code
1 2 Since th® test statistic is less than zero, the
distribution function is zero d.
1 3 Since thB test statistic is greater than one, the

distribution function is one d.

3. If NOBS < 80, then exact one-sided probabilities are computed. In this

case, on the order o8BS operations are required. FeOBS > 80,
approximate one-sided probabilities are computed. These approximate
probabilities require very few computations.

4. An approximate two-sided probability for thes max 0", D™) statistic
can be computed as twice thi€S1DF probability forD (minus one, if
the probability fromAKS1DF is greater than 0.5).

Algorithm

RoutineAKS1DF computes the cumulative distribution function (CDF) for the

one-sided Kolmogorov-Smirnov one-sampleor D™ statistic when the
theoretical CDF is strictly continuous. Exact probabilities are computed
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according to a method given by Conover (1980, page 350) for sample sizes of 80
or less. For sample sizes greater than 80, the asympotic methods discussed by
Conover are used.

Let F(x) denote the theoretical distribution function, and let S,(X) denote the

empirical distribution function obtained from a sample of size NOBS. Then, the D
statistic is computed as

+

D" =sup[F(x) - §,(x)]

X

while the one-sided D™ statistic is computed as
D™ =sup[S,(x) - F(x)]
X

Programming Notes

Routine AKS1DF requires on the order of NOBS’ operations to compute the exact
probabilities, where an operation consists of taking ten or so logarithms. Because
S0 much computation is occurring within each “operati@dS1DF is much
slower than its two-sample counterpart, IMSL funciS2DF (page 184).

Example

In this example, the exact one-sided probabilities for the tabled vallEsooD

-, given, for example, in Conover (1980, page 462), are computed. Tabled values
at the 10% level of significance are used as inpBK&1DF for sample sizes of 5

to 50 in increments of 5. The last two tabled values are obtained using the
asymptotic critical values of

107/+/NOBS
The resulting probabilities should all be close to 0.90.
| NTEGER I, NOBS, NOUT
REAL AKS1DF, D(10)
EXTERNAL AKS1DF, UMACH
C
DATA D/ 0. 447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, O0.165,
& 0.160, 0.151/
C
CALL UMACH (2, NOUT)
C
DO 10 1=1, 10
NOBS = 5*%|
C
WRI TE (NOUT, 99999) D(1), NOBS, AKS1DF(NOBS, D(1))
C
99999 FORMAT (' One-sided Probability for D =, F8.3, ' with NOBS’
& =712, "is’, F8.4)
10 CONTINUE
END
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Output

One-sided Probability for D = 0.447 with NOBS = 5 is 0. 9000
One-sided Probability for D = 0.323 with NOBS = 10 is 0. 9006
One-sided Probability for D = 0.266 with NOBS = 15 is 0. 9002
One-sided Probability for D = 0.232 with NOBS = 20 is 0. 9009
One-sided Probability for D = 0.208 with NOBS = 25 is 0. 9002
One-sided Probability for D = 0.190 with NOBS = 30 is 0. 8992
One-sided Probability for D = 0.177 with NOBS = 35 is 0.9011
One-sided Probability for D = 0.165 with NOBS = 40 is 0. 8987
One-sided Probability for D = 0.160 with NOBS = 45 is 0. 9105
One-sided Probability for D = 0.151 with NOBS = 50 is 0.9077

AKS2DF/DKS2DF (Single/Double precision)

Evaluate the distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Usage
AKS2DF( NOBSX, NOBSY, D)

Arguments
NOBSX — The total number of observations in the first sample. (Input)
NOBSY — The total number of observations in the second sample. (Input)

D — TheD test statistic. (Input)
Dis the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

AKS2DF — The probability of a smalléd. (Output)

Comments

1. Automatic workspace usage is
AKS2DF max(OBSX, NOBSY) + 1 units, or
DKS2DF 2* maxNOBSX, NOBSY) + 1 units.

Workspace may be explicitly provided, if desired, by use of
AK22DF/DK22DF. The reference is

AK22DF( NOBSX, NOBSY, D, WK)
The additional argument is
WK — Work vector of length maxOBSX, NOBSY) + 1.

2. Informational errors
Type Code
1 2 Since th® test statistic is less than zero, then the

distribution function is zero @
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1 3 Sincethe D test statistic is greater than one, then the
distribution function isone at D.

Algorithm

Function AKS2DF computes the cumulative distribution function (CDF) for the
two-sided Kolmogorov-Smirnov two-sampleD statistic when the theoretical CDF
is strictly continuous. Exact probabilities are computed according to a method
given by Kim and Jennrich (1973). Approximate asymptotic probabilities are
computed according to methods also given in this reference.

Let F,(x) and G,,(x) denote the empirical distribution functions for the two
samples, based on n = NOBSX and m = NOBSY observations. Then, the D statistic
is computed as

D= SUp|Fn(X) - Gm(x)|

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute
the exact probabilities, where an operation consists of an addition and a
multiplication. For NOBSX * NOBSY less than 10000, the exact probability is
computed. If thisis not the case, then the Smirnov approximation discussed by
Kim and Jennrich is used if the minimum of NOBSX and NOBSY is greater than ten
percent of the maximum of NOBSX and NOBSY, or if the minimum is greater than
80. Otherwise, the Kolmogorov approximation discussed by Kim and Jennrich is
used.

Example

Function AKS2DF is used to compute the probability of asmaller D statistic for a
variety of sample sizes using values close to the 0.95 probability value.

INTEGER |, NOBSX(10), NOBSY(10), NOUT
REAL AKS2DF, DX 10)
EXTERNAL  AKS2DF, UMACH

C
DATA NOBSX/ 5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
DATA NOBSY/ 10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
DATA D/ 0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796,
& 0.18, 0.18/

C
CALL UMACH (2, NOUT)

C
DO 10 =1, 10

C

WRI TE (NOUT, 99999) D(1), NOBSX(1), NOBSY(I),

& AKS2DF( NOBSX( 1), NOBSY(1), D(1))

C

99999 FORMAT (’ Probability for D =, F5.3, " with NOBSX =, I3,

& "and NOBSY =, 13, " is’, F9.6, '.")

10 CONTINUE
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END

Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability
Probability

for
for
for
for
for
for
for
for
for
for

Output

D = 0.700 with NOBSX = 5 and NOBSY = 10 is 0.980686.
D = 0.550 with NOBSX = 20 and NOBSY = 10 is 0.987553.
D =0.475 with NOBSX = 40 and NOBSY = 10 is 0.972423.
D =0.443 with NOBSX = 70 and NOBSY = 10 is 0.961646.
D =0.403 with NOBSX = 110 and NOBSY = 10 is 0.928667.
D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
D = 0.211 with NOBSX = 200 and NOBSY = 40 is 0.917110.
D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

ANORDF/DNORDF (Single/Double precision)

Evaluate the standard normal (Gaussian) distribution function.

Usage
ANORDF( X)

Arguments

X — Argument for which the normal distribution function is to be evaluated.
(Input)

ANORDF — Function value, the probability that a normal random variable takes
a value less than or equaldXo (Output)

Algorithm

FunctionANORDF evaluates the distribution functio®, of a standard normal
(Gaussian) random variable, that is,

1 x 2
o(x)=—[ e
N2
The value of the distribution function at the poins$ the probability that the

random variable takes a value less than or equal to

The standard normal distribution (for whidRORDF is the distribution function)
has mean of 0 and variance of 1. The probability that a normal random variable

with meanu and variance” is less thary is given byANORDF evaluated aty(—
)o.

d(x) is evaluated by use of the complementary error function, erfc (e
page 71) The relationship is:

®(x) = erfc(-x/+/2.0)/ 2
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Example

Suppose X isanormal random variable with mean 100 and variance 225. In this
example, we find the probability that X isless than 90, and the probability that X

is between 105 and 110.
| NTEGER NOUT
REAL ANORDF, P, X1, X2

EXTERNAL  ANORDF, UMACH

CALL UMACH (2, NauT)
X1 = (90.0-100.0)/15.0
P = ANORDF( X1)
VWRI TE ( NOUT, 99998) P
99998 FORMAT (' The probability that X is less than 90 is ', F6.4)
X1 = (105.0-100.0)/15.0
X2 =(110.0-100.0)/15.0
P = ANORDF(X2) - ANORDF(X1)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 105 and 110 is ’,
& F6.4)
END

Output
The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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ANORIN/DNORIN (Single/Double precision)

| NTEGER
REAL

EXTERNAL

Evaluate the inverse of the standard normal (Gaussian) distribution function.

Usage
ANORI N( P)

Arguments

P — Probability for which the inverse of the normal distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

ANORIN — Function value. (Output)
The probability that a standard normal random variable takes a value less than or
equal toANORI N is P.

Algorithm

FunctionANORI N evaluates the inverse of the distribution functinef a

standard normal (Gaussian) random variable, thaN@Rl N(P) = o (p), where
1 X 42
D(X) :—J e "2 gt
N 21T
The value of the distribution function at the poins the probability that the
random variable takes a value less than or equalTthe standard normal
distribution has a mean of 0 and a variance of 1.

References used to design this routine include Hart et al. (1968), Kinnucan and
Kuki (1968), and Strecok (1968).

Example

In this example, we compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to this point.

NOUT

ANORIN, P, X

ANORI N, UMACH

CALL UMACH (2, NOUT)

P=0.9

X = ANCRI N(P)
VRI TE (NOUT, 99999) X
99999 FORMAT (' The 90th percentile of a standard normal is ’, F6.4)

END

Output

The 90th percentile of a standard normal is 1.2816
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BETDF/DBETDF (Single/Double precision)

Evaluate the beta probability distribution function.

Usage
BETDF(X, PIN, QN

Arguments
X — Argument for which the beta distribution function is to be evaluated.
(Input)

PIN — First beta distribution parameter. (Input)
PI N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

BETDF — Probability that a random variable from a beta distribution having
parameter®l NandQ Nwill be less than or equal # (Output)

Comments
Informational errors
Type Code
1 1 Since the input argumexis less than or equal to zero, the
distribution function is equal to zeroat
1 2 Since the input argumexis greater than or equal to one, the
distribution function is equal to oneat
Algorithm

FunctionBETDF evaluates the distribution function of a beta random variable with
parameter®l NandQ N. This function is sometimes called fimeomplete beta
ratio and, withp = Pl Nandg =Q N, is denoted by, (p, g). It is given by

r(PIr(@) x. pa 1

h(pa)=————| tP7(1-0)" dt

F(p+aq) k

wherel () is the gamma function. The value of the distribution fundti(m q) is
the probability that the random variable takes a value less than or egual to

The integral in the expression above is calledbhemplete beta function and is
denoted by, (p, ). The constant in the expression is the reciprocal dbete

function (the incomplete function evaluated at one) and is denot@gby).

FunctionBETDF uses the method of Bosten and Battiste (1974b).
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Example

Suppose X is a beta random variable with parameters 12 and 12. (X hasa
symmetric distribution.) In this example, we find the probability that X isless than
0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it islessthan 0.5is0.5.)

| NTEGER NOUT

REAL BETDF, P, PIN, QN, X
EXTERNAL BETDF, UVACH

c
CALL UMACH (2, NOUT)
PIN = 12.0
QN =12.0
X =0.6
P = BETDF(X, PIN, QN

VRI TE ( NOUT, 99998) P
99998 FORMAT (' The probability that X is less than 0.6 is ’, F6.4)
X=05
P = P - BETDF(X,PIN,QIN)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 0.6 is ’,
& F6.4)
END

Output
The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
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BETIN/DBETIN (Single/Double precision)

| NTEGER
REAL

Evaluate the inverse of the beta distribution function.

Usage
BETIN(P, PIN, QN

Arguments

P — Probability for which the inverse of the beta distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PI N must be positive.

QIN — Second beta distribution parameter. (Input)
Q N must be positive.

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to
BETI NisP.

Comments
Informational error
Type Code
3 1 The value for the inverse Beta distribution could not be found
in 100 iterations. The best approximation is used.
Algorithm

The functionBETI N evaluates the inverse distribution function of a beta random
variable with paramete® NandQ N, that is, withP=P,p=PIN, andg=Q N;
it determinesc< (= BETI N(P, PI N, Q@ N) ), such that

_ (@) ;x p1/4 _ a1
P = F(p+aq) Jotp -yt

wherel (Jis the gamma function. The probability that the random variable takes
a value less than or equalxds P.

Example

SupposeX is a beta random variable with parameters 12 andXlizag a
symmetric distribution.) In this example, we find the vadusuch that the
probability thatX < %, is 0.9.

NOUT
BETIN, P, PIN QN, X
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EXTERNAL BETI N, UVACH

C
CALL UMACH (2, NOUT)
PIN = 12.0
QN=12.0
P =0.9
X = BETIN(P, PIN, Q N)
VR TE (NOUT, 99999) X

99999 FORMAT (' X is less than ', F6.4, ’ with probability 0.9.")
END

Output
X is less than 0.6299 with probability 0.9.

BNRDF/DBNRDF (Single/Double precision)

Evaluate the bivariate normal distribution function.

Usage
BNRDF(X, Y, RHO)

Arguments

X — One argument for which the bivariate normal distribution function is to be
evaluated. (Input)

Y — The other argument for which the bivariate normal distribution function is to
be evaluated. (Input)

RHO — Correlation coefficient. (Input)

BNRDF — Function value, the probability that a bivariate normal random
variable with correlatioRHO takes a value less than or equaktand less than or
equal toy. (Output)

Algorithm

FunctionBNRDF evaluates the distribution functiénof a bivariate normal
distribution with means of zero, variances of one, and correlatiBA®fthat is,
with p = RHO, and p| < 1,

u? - 2puv + V2

1 X oy
F(xy)=— =~ -
(%) ZHW j_mj_meXp 2(1-p?)

To determine the probability thek< u, andV <v,, where U, V)T is a bivariate

dudv

normal random variable with megarr (., pV)T and variance-covariance matrix
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2
s=| Ou Ouv
o o 2
uv \%
transform (U, V) T to avector with zero means and unit variances. The input to

BNRDF would be X = (uy — U)oy, Y = (V) — Uy) = 0y, and p = oyl (0y0y).

Function BNRDF uses the method of Owen (1962, 1965). For |p| = 1, the
distribution function is computed based on the univariate statistic, Z = min(x, y),
and on the normal distribution function ANORDF (page 186).

See Cooper (1968) for more information on the algorithm used.

Example
Suppose (X, Y) isabivariate norma random variable with mean (0, 0) and

variance-covariance matrix
10 0.9
09 10

In this example, we find the probability that X islessthan —2.0 and Y isless than

0.0.
INTEGER  NOUT
REAL BNRDF, P, RHO, X, Y
EXTERNAL  BNRDF, UMACH
C
CALL UMACH (2, NOUT)
X =-2.0
Y =0.0
RHO = 0.9
P = BNRDF(X, Y, RHO

VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that X is less than -2.0 and Y ’,
& 'islessthan 0.0 is ', F6.4)
END

Output
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

CHIDF/DCHIDF (Single/Double precision)

Evaluate the chi-squared distribution function.

Usage
CHIDF(CHSQ, DF)
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Arguments

CHSQ — Argument for which the chi-squared distribution function is to be
evaluated. (Input)

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIDF — Function value, the probability that a chi-squared random variable
takes a value less than or equaC#sQ (Output)

Comments

Informational errors
Type Code
1 1 Since the input argume@sq, is less than zero, the
distribution function is zero &HSQ.
2 3 The normal distribution is used for large degrees of freedom.
However, it has produced underflow. Therefore, the
probability, CHI DF, is set to zero.

Algorithm

FunctionCHI DF evaluates the distribution functidn, of a chi-squared random
variable withDF degrees of freedom, that is, withk= DF, andx = CHSQ,

1 X _—t/2,vi2-1
F(X)=—7——| e '“t dt
X 2V’2r(v/2)J0

wherel (Jis the gamma function. The value of the distribution function at the
pointx is the probability that the random variable takes a value less than or equal
to x.

Forv > 65,CHI DF uses the Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) to the normal distribution, and roANTRDF
(page 186) is used to evaluate the normal distribution function.

Forv < 65, CHI DF uses series expansions to evaluate the distribution function. If
X < max /2, 26),CHI DF uses the series 6.5.29 in Abramowitz and Stegun
(1964); otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and
Stegun.
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Figure 11-8 Chi-Squared Distribution Function
Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this
example, we find the probability that X isless than 0.15 and the probability that X

isgreater than 3.0.

| NTEGER NOUT
REAL CH DF, CHSQ DF, P
EXTERNAL CH DF, UMACH

g

CALL
DF .
CHSQ = 0. 15
P CHI DF( CHSQ, DF)
VRI TE ( NOUT, 99998) P
99998 FORMAT (' The probability that chi-squared with 2 df is less ’,
& ‘than 0.15is ', F6.4)
CHSQ =3.0
P =1.0-CHIDF(CHSQ,DF)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that chi-squared with 2 df is greater ’,
& ‘than 3.0 is ’, F6.4)
END
Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

=
B
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CHIIN/DCHIIN (Single/Double precision)

Evaluate the inverse of the chi-squared distribution function.

Usage
CHI IN(P, DF)
Arguments

P — Probability for which the inverse of the chi-squared distribution function is
to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or
equal toCHI I NisP.

Comments
Informational errors
Type Code
4 1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

FunctionCHI | N evaluates the inverse distribution function of a chi-squared
random variable witlbF degrees of freedom; that is, wRh= P andv = DF, it
determines (= CHI I N(P, DF) ), such that

P — V/Z 1 jx e_t/ZtV/z_ldt
2V2r (v /2)0

wherel (QJis the gamma function. The probability that the random variable takes
a value less than or equalxds P.

Forv < 40,CH | Nuses bisection (i < 2 orP > 0.98) or regula falsi to find the
point at which the chi-squared distribution function is equ&l dhe distribution
function is evaluated using routigel DF (page 193).

For 40< v < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.18) to the normal distribution is used, and routine
ANCRI N (page 188) is used to evaluate the inverse of the normal distribution
function. Forv = 100, the ordinary Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, equation 26.4.17) is used.
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Example

In this example, we find the 99-th percentage points of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.
| NTEGER NOUT

REAL CHIN DF, P, X
EXTERNAL CH I'N, UVACH

C
CALL UMACH (2, NOUT)
P =0.99
DF = 2.0
X = CHI I N(P, DF)

VWRI TE (NOUT, 99998) X
99998 FORMAT (’ The 99-th percentage point of chi-squared with 2 df’
& ,is’, F7.3)
DF = 64.0
X = CHIIN(P,DF)
WRITE (NOUT,99999) X
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’
& ,is’, F7.3)
END

Output
The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

CSNDF/DCSNDF (Single/Double precision)

Evaluate the noncentral chi-squared distribution function.

Usage
CSNDF(CHSQ, DF, ALAM)

Arguments

CHSQ — Argument for which the noncentral chi-squared distribution function is
to be evaluated. (Input)

DF — Number of degrees of freedom of the noncentral chi-squared distribution.
(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAMMust be nonnegative, aAdAM+ DF must be less than or equal to 200,000.

CSNDF — Function value, the probability that a noncentral chi-squared random
variable takes a value less than or equaH®Q (Output)
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Comments

1 Informational errors
Type Code
1 1 Since the input argument, CHSQ, is less than or equal
to zero, the distribution function is zero at CHSQ
3 2 Convergence was hot obtained. The best

approximation to the probability is returned.

2. This subroutine sums terms of an infinite series of central chi-squared
distribution functions weighted by Poisson terms. Summing terminates
when either the current term isless than 10 * AMACH(4) times the current
sum or when 1000 terms have been accumulated. In the latter case, a
warning error isissued.

Algorithm

Function CSNDF evaluates the distribution function of a noncentral chi-squared
random variable with DF degrees of freedom and noncentrality parameter ALAM
that is, withv = DF, A = ALAM and x = CHSQ,

. e—)\/z()\/z)i « {(v+2)/2-1 112

i=0 il 02(v+2i)/2 I—(%z.)

CSNDF(x) = 3

where I ([lis the gammafunction. Thisisaseries of central chi-squared
distribution functions with Poisson weights. The value of the distribution function
at the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or aternatively and equivalently, as the sum of squares of
independent normal random variables. If Y; have independent normal

distributions with means p; and variances equal to one and

X=3 0¥

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to
n 2
Zizl Hi

With anoncentrality parameter of zero, the noncentral chi-squared distribution is
the same as the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest, and
then sums forward and backward from that point, terminating when the additional
terms are sufficiently small or when a maximum of 1000 terms have been
accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun

198 « Chapter 11: Probability Distribution Functions and Inverses  IMSL MATH/LIBRARY Special Functions



(1964) is used to speed the evaluation of the central chi-squared distribution
functions.
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Figure 11-9 Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable
that follows the noncentral chi-squared distribution with noncentrality parameter
of 1 and with 2 degrees of freedom is less than or equal to 8.642.

| NTEGER NOUT

REAL ALAM CHSQ CSNDF, DF, P
EXTERNAL CSNDF, UMACH

C
CALL UMACH (2, NOUT)
DF =20
ALAM = 1.0
CHSQ = 8. 642
P = CSNDF(CHSQ DF, ALAM

VRI TE (NOUT, 99999) P
99999 FORMAT (' The probability that a noncentral chi-squared randon’,
& 1, variable with 2 df and noncentrality 1.0 is less’,
& /,than 8.642 is’, F5.3)
END
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Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950

FDF/DFDF (Single/Double precision)

Evaluate the F distribution function.

Usage
FDF(F, DFN, DFD)

Arguments
F — Argument for which th€& distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FDF — Function value, the probability that Brandom variable takes a value
less than or equal to the ingut (Output)

Comments

Informational error
Type Code
1 3 Since the input argumenis not positive, the distribution
function is zero ak.

Algorithm

FunctionFDF evaluates the distribution function of a Snededénandom

variable withDFN numerator degrees of freedom @i denominator degrees of
freedom. The function is evaluated by making a transformation to a beta random
variable and then using the routiBETDF (page 189). IX is anF variate withv,

andv, degrees of freedom ant= v, X/(v, + v; X), thenY is a beta variate with
parameterp = v,/2 andq = v,/2. The functiorFDF also uses a relationship
betweerF random variables that can be expressed as follows:

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/X, DFD, DFN)
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Figure 11-10 F Distribution Function
Example

In this example, we find the probability that an F random variable with one
numerator and one denominator degree of freedom is greater than 648.

| NTEGER NOUT

REAL DFD, DFN, F, FDF, P

EXTERNAL FDF, UVACH

C
CALL UMACH (2, NOUT)
F = 648.0
DFN = 1.0
DFD = 1.0
P = 1.0 - FDF(F, DFN, DFD)

VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that an F(1,1) variate is greater ’,
& ‘than 648 is ’, F6.4)
END

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250

FIN/DFIN (Single/Double precision)

Evaluate the inverse of the F distribution function.

IMSL MATH/LIBRARY Special Functions  Chapter 11: Probability Distribution Functions and Inverses « 201



Usage
FI N(P, DFN, DFD)

Arguments

P — Probability for which the inverse of tliedistribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FIN — Function value. (Output)
The probability that aff random variable takes a value less than or equal to

FI NisP.

Comments

Informational error

Type Code

4 4 FINis set to machine infinity since overflow would occur upon

modifying the inverse value for tikedistribution with the
result obtained from the inverBETA distribution.

Algorithm

FunctionFI N evaluates the inverse distribution function of a Snede€or’s
random variable witlDFN numerator degrees of freedom @b denominator
degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using the roui®@ N (page 191). 1K is anF
variate withv, andv, degrees of freedom ant= v, X/(v, + v, X), thenY is a beta
variate with parameters=v,/2 andq = v,/2. If P < 0.5,FI N uses this

relationship directly; otherwise, it also uses a relationship betweandom
variables that can be expressed as follows, using raembinépage 200), which is
theF cumulative distribution function:

FDF(F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN)

Example

In this example, we find the 99-th percentage point fdf eandom variable with
1 and 7 degrees of freedom.

| NTEGER NOUT

REAL DFD, DFN, F, FIN, P

EXTERNAL FI' N, UVACH

CALL UMACH (2, NOUT)
P =0.99
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END

1
7
E

.0
.0

I N( P, DFN, DFD)
VRI TE ( NOUT, 99999) F
99999 FORMAT (' The F(1,7) 0.01 critical value is ’, F6.3)

Output

The F(1,7) 0.01 critical value is 12.246

GAMDF/DGAMDEF (Single/Double precision)

Evaluate the gamma distribution function.

Usage
GAMDF(X, A)

Arguments

X — Argument for which the gamma distribution function is to be evaluated.
(Input)

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

GAMDF — Function value, the probability that a gamma random variable takes a
value less than or equalXo (Output)

Comments

Informational error
Type Code
1 2 Since the input argumexis less than zero, the distribution
function is set to zero.

Algorithm

FunctionGANDF evaluates the distribution functidn, of a gamma random
variable with shape parameterthat is,

F(x) = %a) J’OX e tta gt

wherel () is the gamma function. (The gamma function is the integral from 0 to
oo of the same integrand as above). The value of the distribution function at the
pointx is the probability that the random variable takes a value less than or equal
to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parametdr (which must be positive), or even as a three-parameter
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| NTEGER
REAL
EXTERNAL

distribution in which the third parameter c is alocation parameter. In the most
general case, the probability density function over (c, «) is

(1) = 1 o

b?r (a)
If T issuch arandom variable with parameters a, b, and c, the probability that T <
t, can be obtained from GAMDF by setting X = (t, — c)/b.

If Xislessthanaor if Xislessthan or equal to 1.0, GAMDF uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz

and Stegun, 1964.)
1.0

) a-1

e (x-c

1 ) - a
/S . — 0.5
] / / — 1.0
0.8 — / ’ -~ 5.0
IN / K — 10.0
_ ‘ / /
506 | /
- *‘\ /
I, ]
= ] /
i}OA - /
al /
0.2 H /
N /
0.0 '\/\\/\/\\\\\\\\\\\\\\\\
0.0 5.0 10.0 15.0 20.0
Figure 11-11 Gamma Distribution Function
Example

Suppose X is agamma random variable with a shape parameter of 4. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) In this
example, we find the probability that X is less than 0.5 and the probability that X
isbetween 0.5 and 1.0.

NOUT

A, GAMDF, P, X
GAMDF, UMACH

CALL UMACH (2, NOUT)

A=40
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X
P

GANDF( X, A)

VRl TE ( NOUT, 99998) P
99998 FORMAT (' The probability that X is less than 0.5 is ’, F6.4)
X=10
P = GAMDF(X,A) - P
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 0.5 and 1.0 is ’,

& F6.4)

END

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

TDF/DTDF (Single/Double precision)

Evaluate the Studenttsistribution function.

Usage
TDF( T, DF)

Arguments

T — Argument for which the Student'slistribution function is to be evaluated.
(Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TDF — Function value, the probability that a Studehtandom variable takes a
value less than or equal to the input (Output)

Algorithm

FunctionTDF evaluates the distribution function of a Studehtandom variable

with DF degrees of freedom. If the squareTaé greater than or equal bF, the
relationship of & to anF random variable (and subsequently, to a beta random
variable) is exploited; and routiB=TDF (page 189) is used. Otherwise, the

method described by Hill (1970) is usedDF is not an integer, iDF is greater

than 19, or ifDF is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function.DF is less than 20 amsBS(T) is less than 2.0,

a trigonometric series (see Abramowitz and Stegun, 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series given
by Hill (1970) that converges well for large values a$ used.
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Figure 11-12 Student’s t Distribution Function

Example

In this example, we find the probability that at random variable with 6 degrees of
freedom is greater in absolute value than 2.447. We use thefact that t is
symmetric about O.

| NTEGER NOUT
REAL DF, P, T, TDF
EXTERNAL TDF, UMACH

C
CALL UMACH (2, NOUT)
T = 2.447
DF = 6.0
P = 2.0*TDF(- T, DF)

VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that a t(6) variate is greater ’,
& ‘than 2.447 in’, /, * absolute value is ', F6.4)
END

Output
The probability that a t(6) variate is greater than 2.447 in
absolute value is 0.0500
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TIN/DTIN (Single/Double precision)

| NTEGER
REAL

EXTERNAL

Evaluate the inverse of the Studentistribution function.

Usage
TIN(P, DF)

Arguments

P — Probability for which the inverse of the Studentstribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TIN — Function value. (Output)
The probability that a Studentsandom variable takes a value less than or equal
toTI NisP.

Comments

Informational error
Type Code
4 3 TI Nis set to machine infinity since overflow would occur upon
modifying the inverse value for tliredistribution with the
result obtained from the inverfalistribution.

Algorithm

FunctionTI N evaluates the inverse distribution function of a Studém#iadom
variable withDF degrees of freedom. Let=DF. If v equals 1 or 2, the inverse

can be obtained in closed formyiis between 1 and 2, the relationship oftaa
beta random variable is exploited and rout&g1 N (page 191) is used to

evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small
values ofv greater than 2, Hill's algorithm inverts an integrated expansion in 1/(1

+ t2/v) of thet density. For larger values, an asymptotic inverse Cornish-Fisher
type expansion about normal deviates is used.

Example

In this example, we find the 0.05 critical value for a two-sidedt with 6
degrees of freedom.

NOUT
DF, P, T, TIN
TI'N, UVACH

CALL UMACH (2, NOUT)
P =0.975
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DF = 6.0
T TI N( P, DF)
VWRI TE (NOUT, 99999) T
99999 FORMAT (' The two-sided t(6) 0.05 critical value is ’, F6.3)
END

Output
The two-sided t(6) 0.05 critical value is 2.447

TNDF/DTNDF (Single/Double precision)

Evaluate the noncentral Studerttdistribution function.

Usage
TNDF(T, |DF, DELTA)

Arguments

T — Argument for which the noncentral Studemtistribution function is to be
evaluated. (Input)

IDF — Number of degrees of freedom of the noncentral Studedigsribution.

(Input)
| DF must be positive.

DELTA — The noncentrality parameter. (Input)

TNDF — Function value, the probability that a noncentral Studémnésdom
variable takes a value less than or equal to(Output)

Algorithm

FunctionTNDF evaluates the distribution functiénof a noncentral random
variable withl DF degrees of freedom and noncentrality paran@iEeTA; that is,
withv =1 DF, d =DELTA, andt, =T,

; yV/2 e—52/2
F(to) = I_(;

2)(v+1)/2

VT (v/2)(v +x

i i/2
Sraroeiniaf S 25 ] a

wherel ([lis the gamma function. The value of the distribution function at the
pointt, is the probability that the random variable takes a value less than or equal

tot,.

The noncentral random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random
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variable and an independent chi-squared random variable. If w has a hormal
distribution with mean & and variance equal to one, u has an independent chi-
squared distribution with v degrees of freedom, and

=W T

then x has a noncentral t distribution with v degrees of freedom and noncentrality
parameter d.

The distribution function of the noncentral t can also be expressed as a double
integral involving anormal density function (see, for example, Owen, 1962,

page 108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.

1.0 — — —

S

0.8 / S

0.6 - /

TNDF(z,20,6)
[

0.4 — /

] j

/

0.0 71 T T 1T 71 \\ T T T [ T 1T T[T 1T
—-4.0 0.0 4.0 3.0 12.0 16.0 20.0
X

Figure 11-13 Noncentral Student’s t Distribution Function

Example

Suppose T is anoncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that T isless
than 12.0. (This can be checked using the table on page 111 of Owen, 1962, with
n = 0.866, which yields A = 1.664.)

| NTEGER | DF, NOUT
REAL DELTA, P, T, TNDF
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EXTERNAL TNDF, UMACH

C
CALL UMACH (2, NOUT)
IDF =6
DELTA = 6.0
T = 12.0
P = TNDF(T, | DF, DELTA)

VWRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that T is less than 12.0is’, F6.4)
END

Output
The probability that T is less than 12.0 is 0.9501

GCDF/DGCDF (Single/Double precision)

Evaluate a general continuous cumulative distribution function given ordinates of
the density.

Usage

GCDF(X0, IOPT, M, X, F)

Arguments

X0 — Point at which the distribution function is to be evaluated. (Input)
|OPT — Indicator of the method of interpolation. (Input)

| OPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolatio®RT = 1 or 2) and greater than
3 if a curve is fitted through the ordinate¢©®T = 3 or 4).

X — Array containing the abscissas or the endpoints. (Input)

If 1 OPT =1 or 3,Xis of length 2. Ifi OPT = 2 or 4,X is of lengthM Forl OPT = 1
or 3,X(1) contains the lower endpoint of the support of the distributiorxézjd
is the upper endpoint. FOOPT = 2 or 4,X contains, in strictly increasing order,
the abscissas such thdt ) corresponds t&(l ).

F — Vector of lengttMcontaining the probability density ordinates
corresponding to increasing abscissas. (Input)

If1oPT=1or3;forl =1, 2,..., MF(l) corresponds tx(1) + ( —1)* (X(2) -
X(1))/(M- 1); otherwiseF andX correspond one for one.

GCDF — Function value, the probability that a random variable whose density is
given inF takes a value less than or equak@o (Output)

210« Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions



Comments
If | OPT = 3, automatic workspace usage is

GCDF 6 * Munits, or
DGCDF 11 * Munits.

If | OPT = 4, automatic workspace usage is

GCDF  5* Munits, or
DGCDF 9 * Munits.

Workspace may be explicitly provided, if desired, by the use of G4DF/D&DF. The
referenceis

GADF(P, I1OPT, M X, F, WK |WK)

The arguments in addition to those of GCDF are

WK — Work vector of length 5 Mif | OPT = 3, and of length & mif | OPT = 4.
IWK — Work vector of lengtiv

Algorithm

FunctionGCDF evaluates a continuous distribution function, given ordinates of the
probability density function. It requires that the range of the distribution be
specified inX. For distributions with infinite ranges, endpoints must be chosen so
that most of the probability content is included. The funcHODF first fits a

curve to the points given andF with either a piecewise linear interpolant or a
C' cubic spline interpolant based on a method by Akima (1970). Fur@&tiom

then determines the aref,under the curve. (If the distribution were of finite
range and if the fit were exact, this area would be 1.0.) Using the same fitted
curve,GCDF next determines the area up to the pgjr(t X0). The value

returned is the area up xpdivided byA. Because of the scaling By it is not
assumed that the integral of the density defined &ydF is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained wheroPT equals 3 or 4, that is, when a cubic spline is

used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The
probability density function of a beta random variable with parampetanslq is

(%) = M(p+a)

xP11-x)9" forosxs<1
r(p)r(a)
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where I'(Qis the gamma function. The density is equal to O outside the interval

[0, 1]. We compute a constant multiple (we can ignore the constant gamma
functions) of the density at 300 equally spaced points and input thisinformation
in X and F. Knowing that the probability density of this distribution is very
peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally
spaced abscissas, but we will keep it smple. Note that this is the same example as
one used in the description of routine BETDF (page 189). The result from BETDF
would be expected to be more accurate than that from GCDF since BETDF is
designed specifically for this distribution.

INTEGER M
PARAVETER  ( M=300)

C

| NTECER I, 10PT, NOUT

REAL F(M, GCDF, H P, PINL, Q N1, X(2), X0, Xl

EXTERNAL ~ GCDF, UVACH
C

CALL UMACH (2, NauUT)

X0 = 0.6

IOPT = 3
C Initializations for a beta(12,12)
C di stribution.

PINL = 11.0

QNL = 11.0

X = 0.0

H = 1.0/ (M1.0)

X(1) = X

F(1) = 0.0

X =X + H
C Conput e ordi nates of the probability
C density function.

DO 10 1=2, M- 1

F(1) = XI**PINL*(1.0-X)**Q NL
X =X + H
10 CONTI NUE

X(2) =1.0

F(M =0.0

P = GCDF( X0, 1 OPT, M X, F)

VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that X is less than 0.6 is ’, F6.4)
END

Output
The probability that X is less than 0.6 is 0.8364

GCIN/DGCIN (Single/Double precision)

Evaluate the inverse of ageneral continuous cumulative distribution function
given ordinates of the density.

Usage
GCIN(P, IOPT, M, X, F)

212 « Chapter 11: Probability Distribution Functions and Inverses IMSL MATH/LIBRARY Special Functions



Arguments

P — Probability for which the inverse of the distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

|OPT — Indicator of the method of interpolation. (Input)
| OPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M — Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolatio®RT = 1 or 2) and greater than
3 if a curve is fitted through the ordinate¢©®T = 3 or 4).

X — Array containing the abscissas or the endpoints. (Input)

If 1 OPT =1 or 3,Xis of length 2. Ifi OPT = 2 or 4,X is of lengthmM Forl OPT = 1
or 3,X(1) contains the lower endpoint of the support of the distributiorxézjd
is the upper endpoint. FOOPT = 2 or 4,X contains, in strictly increasing order,
the abscissas such thdt ) corresponds t&(l ).

F — Vector of lengttMcontaining the probability density ordinates
corresponding to increasing abscissas. (Input)

If1oPT=1o0r3,forl =1, 2,...,MF(l) corresponds t&(1) + I —1)* (X(2)-
X(1))/(M- 1); otherwiseF andX correspond one for one.

GCIN — Function value. (Output)

The probability that a random variable whose density is givertakes a value
less than or equal ®©Cl NisP.

Comments

If 1| OPT = 3, automatic workspace usage is

GCIN  6* Munits, or
DGCI N 11* Munits.

If | OPT = 4, automatic workspace usage is

GCIN  5* Munits, or
DGCIN 9* Munits.

Workspace may be explicitly provided, if desired, by the ussSbR/DG3I N. The
reference is
&SBINP, 1OPT, M X F, W W)

The arguments in addition to thoseGaf N are
WK — Work vector of length 5 Mif | OPT = 3, and of length 4 Mif | OPT = 4.
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IWK — Work vector of lengtiv

Algorithm

FunctionGCl N evaluates the inverse of a continuous distribution function, given
ordinates of the probability density function. The range of the distribution must
be specified irX. For distributions with infinite ranges, endpoints must be chosen
so that most of the probability content is included.

The functionGCl Nfirst fits a curve to the points givenxnandF with either a

piecewise linear interpolant orG cubic spline interpolant based on a method by
Akima (1970). FunctiosCl N then determines the argg,under the curve. (If

the distribution were of finite range and if the fit were exact, this area would be
1.0.) It next finds the maximum abscissa up to which the area is le SR izenul

the minimum abscissa up to which the area is greateAfhahhe routine then
interpolates for the point correspondingAe. Because of the scaling By it is

not assumed that the integral of the density defineddndF is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained wherOPT equals 3 or 4, that is, when a cubic spline is

used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we find the 90-th percentage point for a beta random variable
with parameters 12 and 12. The probability density function of a beta random
variable with parametegsandq is

_T(p+0q)
= or@

wherel ([lis the gamma function. The density is equal to 0 outside the interval

[0, 1]. With p = q, this is a symmetric distribution. Knowing that the probability
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps
get a better fit by using unequally spaced abscissas, but we will keep it simple and
use 300 equally spaced points. Note that this is the same example that is used in
the description of routinBETI N (page 191). The result froBETI N would be

expected to be more accurate than that f@aN sinceBETI N is designed

specifically for this distribution.

INTEGER M
PARAVETER  ( M=300)

xP11-x)91 forosx<1

C
INTEGER |, 1OPT, NOUT
REAL BETA, C, F(M, GCOIN, H P, PIN, PINI, QN, QNI,
& X(2), X0, X
EXTERNAL  BETA, GCIN, UNVACH
C

CALL UMACH (2, NOUT)
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P = 0.9

IOPT = 3
C Initializations for a beta(12,12)
C di stribution.

PIN = 12.0

QN =12.0

PINL = PIN- 1.0

QNL =QN- 1.0

C = 1.0/ BETA(PIN, Q N)

X = 0.0

H = 1.0/ (M1.0)

X(1) = X

F(1) = 0.0

X =X + H
C Conput e ordi nates of the probability
C density function.

DO 10 1=2, M- 1

F(1) = C-XI**PINL*(1.0-X)**Q NL
X =X + H
10 CONTI NUE

X(2) = 1.0

F(M =0.0

X0 = GNP, ICOPT,MX F)

VRI TE ( NOUT, 99999) X0
99999 FORMAT (' X is less than ’, F6.4, ' with probability 0.9.")
END

Output
X is less than 0.6304 with probability 0.9.
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Chapter 12: Mathieu Functions

Routines
Evaluate the eigenvalues
for the periodic Mathieu funCtionS.................vvvvvvveiiininiiinnnnn. MATEE 217
Evaluate even, periodic Mathieu functions...............ccc........ MATCE 220
Evaluate odd, periodic Mathieu functions .............ccceeeeeen. MATSE 223

Usage Notes

Mathieu’s equation is

2
d_;/ +(a—-2qcos2v)y =0
dv

It arises from the solution, by separation of variables, of Laplace’s equation in
elliptical coordinates, whera is the separation constantdamnis related to the
ellipticity of the coordinate system. If wet te= ccs v, then Mathieu’s equation
can be written as

2
(1—t2)%+t%+(a+2q—4qt2)y: 0

For various physically important problems, the solui@) must be periodic.
There exist, for particular value$ &, periodic solutions to Mathieu’s equation of
periad krtfor any integek. These particular value$ a are callé eigenvalues or
characteristic values. They are computed using the routMEE (page 217).

There exist sequences of both even and odd periodic solutions to Mathieu’s
equation. The even solutions are computed#r CE (page 220). The odd
solutions are computed IATSE (page 223).

MATEE/DMATEE (Single/Double precision)

Evaluate the eigenvalues for the periodic Mathieu funstion
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Usage

CALL MATEE (Q N, ISYM |PER EVAL)
Arguments

Q — Parameter. (Input)

N — Number of eigenvalues to be computed. (Input)
ISYM — Symmetry indicator. (Input)

I SYM Meaning

0 Even

1 Odd

I PER — Periodicity indicator. (Input)
| SYM Period

0 pi

1 2* pi

EVAL — Vector of lengthN containing the eigenvalues. (Output)

Comments

1. Automatic workspace usage is
MATEE 2* Nunits, or
DMVATEE 4* Nunits.

Workspace may be explicitly provided, if desired, by use of
M2TEE/DMRTEE. The reference is

CALL MPTEE (Q N, ISYM |PER EVAL, NORDER, WORKD,
ORKE)

The additional arguments are as follows:

NORDER — Order of the matrix whose eigenvalues are computed.
(Input)

WORKD — Work vector of siz&lORDER. (Input/Output)
If EVAL is large enough theBvVAL andWORKD can be the same vector.

WORKE — Work vector of sizedORDER. (Input/Output)

2. Informational error
Type Code
4 1 The iteration for the eigenvalues did not converge.
Algorithm

The eigenvalues of Mathieu’s equation are computed by a method due to Hodge
(1972). The desired eigenvalues are the same as the eigenvalues of the following
symmetric, tridiagonal matrix:
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Wy Xy 0
aXo W, 0X;
0 aX, W,
0 0 qgX,
Here,
_ (V2 ifISYM =IPER=m=0
xm - .
1 otherwise
W, = [m+IPER +2(1- IPER)ISYM]® +V,,
where

+gq IfIPER=14ISYM =0andm=0
Vi, =1-q IfIPER=LISYM =1andm=0

0 otherwise

Since the above matrix is semi-infinite, it must
can be computed. Routine MATEE computes an

be truncated before its eigenvalues
estimate of the number of terms

needed to get accurate results. This estimate can be overridden by calling MeTEE
with NORDER equal to the desired order of the truncated matrix.

The eigenvalues of this matrix are computed using the routine EVLSB found in the

IMSL MATH/LIBRARY Chapter 2.

In this example, the eigenvalues for g = 5, even symmetry, and 1t periodicity are

Example
computed and printed.
C Decl are vari abl es
| NTEGER N
PARAMETER (N=10)
C
| NTEGER I SYM | PER, K, NOUT
REAL Q EVAL(N
EXTERNAL CONST, MATEE, UMACH
C Comput e
Q =50
| SYM =0
IPER = 0
CALL MATEE (Q N, ISYM |PER EVAL)

C Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRI TE (NQOUT, 99999) 2*K-2, EVAL(K)
10 CONTI NUE
99999 FORMAT (' Eigenvalue’, 12, =", F9.4)
END
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Ei genval ue
Ei genval ue
Ei genval ue
Ei genval ue
Ei genval ue
Ei genval uel0
Ei genval uel2
Ei genval uel4
Ei genval uel6
Ei genval uel8

oo A~NO

Output
-5. 8000
7.4491
17. 0966
36. 3609
64.1989
100. 1264
144.0874
196. 0641
256. 0491
324. 0386

MATCE/DMATCE (Single/Double precision)

Evaluate a sequence of even, periodic, integer order, real Mathieu functions.

Usage
CALL MATCE (X, Q N, CE)

Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated.
(Input)

Q — Parameter. (Input)

The paramete® must be positive.

N — Number of elements in the sequence. (Input)

CE — Vector of lengthN containing the values of the function through the series.
(Output)

CE(1 ) contains the value of the Mathieu function of onderl1 atX for1 =1 to

N.

Comments
1. Automatic workspace usage is
MATCE 6 * NORDER + 6 units, or

DVATCE 12* NORDER + 12 units.

Workspace may be explicitly provided, if desired, by use of
M2TCE/DMRTCE. The reference is

CALL MRTCE (X, Q N, CE, NORDER, NEEDEV, EVALO
EVAL1, CCEF, WORK, BSJ)
The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues.
(Input)

It must be greater tham RoutineMATSE computesNORDER by the
following call toMBTEE.
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CALL MBTEE(Q N, NORDER)

NEEDEV — Logical variable, if TRUE. , the eigenvalues must be
computed. (Input)

EVALO — Real work vector of lengthORDER containing the
eigenvalues computed WATEE with | SYM= 0 and PER = 0.
(Input/Output)

If NEEDEV is. TRUE. , thenEVALO is computed bWRTCE; otherwise, it
must be set as an input value.

EVAL1 — Real work vector of lengthORDER containing the
eigenvalues computed WATEE with | SYM= 0 and PER = 1.
(Input/Output)

If NEEDEV is. TRUE. , thenEVAL1 is computed bWRTCE; otherwise, it
must be set as an input value.

COEF — Real work vector of lengthORDER + 4.
WORK — Real work vector of lengthORDER + 4.
BSJ — Real work vector of length*2NORDER — 2.

2. Informational error
Type Code
4 1 The iteration for the eigenvalues did not converge.
Algorithm

The eigenvalues of Mathieu’s equation are computed MYNEE (page 217).
The function values are then computed using a sum of Bessel functions, see
Gradshteyn and Ryzhik (1965), equation 8.661.

Example 1

In this example, ¢#x =1/4,9=1),n =0, ..., 9 is computed and printed.

C Decl are vari abl es
| NTEGER N
PARAMETER ( N=10)

| NTEGER K, NOUT
REAL CE(N), CONST, Q X
EXTERNAL CONST, MATCE, UMACH
C Conput e
Q=10
X = 0.25*CONST('PI")
CALL MATCE (X, Q, N, CE)
C Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, CE(K)
10 CONTINUE
99999 FORMAT (' ce sub’, 12, (, F6.3,",, F6.3,") ="', F6.3)
END
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ce sub 0 ( 0.785, 1.000) = 0.654
ce sub 1 ( 0.785, 1.000) = 0.794
ce sub 2 ( 0.785, 1.000) = 0.299
ce sub 3 ( 0.785, 1.000) = -0.555
ce sub 4 ( 0.785, 1.000) = -0.989
ce sub 5 ( 0.785, 1.000) = -0.776
ce sub 6 ( 0.785, 1.000) = -0.086
ce sub 7 ( 0.785, 1.000) = 0.654
ce sub 8 ( 0.785, 1.000) = 0.998
ce sub 9 ( 0.785, 1.000) = 0.746
Example 2

In this example, we compute ce,(x, g) for various values of n and x and afixed
value of g. To avoid having to recompute the eigenvalues, which depend on q but
not on x, we compute the eigenvalues once and passin their value to MTCE. The
eigenvalues are computed using MATEE (page 217). The routine MBTEE is used to
compute NORDER based on Qand N. The arrays BSJ, COEF and WORK are used as
temporary storagein MTCE.

C Decl are vari abl es

| NTEGER MAXORD, N, NX
PARAMETER ( MAXORD=100, N=4, NX=5)

C
| NTEGER I SYM K, NORDER, NOUT
REAL BSJ(2* MAXORD-2), CE(N), CONST, COEF( MAXORD+4)
REAL EVALO( MAXORD), EVAL1(MAXORD), PI, Q WORK(MAXORD+4), X
EXTERNAL  CONST, MATEE, M2TCE, UMACH
C Comput e NORDER
Q=1.0
CALL MBTEE (Q N, NORDER)
C
CALL UMACH (2, NauT)
VRI TE (NOUT, 99997) NORDER
C Conput e ei genval ues
ISYM =0
CALL MATEE (Q NORDER, |SYM 0, EVALO)
CALL MATEE (Q NORDER, |SYM 1, EVAL1)
C

Pl = CONST(PI')
Compute function values
WRITE (NOUT, 99998)
DO 10 K=0, NX
X = (K*PI)/NX
CALL M2TCE(X, Q, N, CE, NORDER, .FALSE., EVALO, EVAL1,
& COEF, WORK, BSJ)
WRITE (NOUT,99999) X, CE(1), CE(2), CE(3), CE(4)
10 CONTINUE
C
99997 FORMAT (' NORDER =", 13)
99998 FORMAT (/, 28X, 'Order’, /, 20X, '0", 7X, '1’, 7X,
& '2,7X,'3)
99999 FORMAT (' ce(’, F6.3,") =, 4F8.3)
END

222 « Chapter 12: Mathieu Functions IMSL MATH/LIBRARY Special Functions



NORDER = 23
O der

0 1 2 3
ce( 0.000) = 0.385 0.856 1.086 1.067
ce( 0.628) = 0.564 0.838 0.574 -0.131
ce( 1.257) = 0.926 0.425 -0.575 -0.820
ce( 1.885) = 0.926 -0.425 -0.575 0.820
ce( 2.513) = 0.564 -0.838 0.574 0.131
ce( 3.142) = 0.385 -0.856 1.086 -1.067

-1.2 L I N

0.0 0.1 0.2 0.3 0.4 0.5

Figure 12-1 Plot of ce,(x, g=1)

MATSE/DMATSE (Single/Double precision)

Evaluate a sequence of odd, periodic, integer order, real Mathieu functions.

Usage
CALL MATSE (X, Q N, SE)
Arguments

X — Argument for which the sequence of Mathieu functions is to be evaluated.
(Input)
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Q — Parameter. (Input)
The paramete® must be positive.

N — Number of elements in the sequence. (Input)

SE — Vector of lengthN containing the values of the function through the
series. (Output)
SE(1 ) contains the value of the Mathieu function of ondet X for1 = 1 toN.

Comments
1. Automatic workspace usage is

MATSE 6* NORDER + 9 units, or
DVATSE 12 * NORDER + 18 units.

Workspace may be explicitly provided, if desired, by use of
M2TSE/DMRTSE. The reference is

CALL MRTSE (X, Q N, SE, NORDER, NEEDEV, EVALO,
EVAL1, COEF, WORK, BSJ)

The additional arguments are as follows:

NORDER — Order of the matrix used to compute the eigenvalues.
(Input)

It must be greater tham RoutineMATSE computesNORDER by the
following call toMBTEE.

CALL MBTEE (Q N, NORDER)

NEEDEV — Logical variable, if TRUE. , the eigenvalues must be
computed. (Input)

EVALO — Real work vector of lengthORDER containing the
eigenvalues computed WMATEE with | SYM= 1 and PER = 0.
(Input/Output)

If NEEDEV is. TRUE. , thenEVALO is computed bWRTSE; otherwise, it
must be set as an input value.

EVAL1 — Real work vector of lengthORDER containing the
eigenvalues computed WMATEE with | SYM= 1 and PER = 1.
(Input/Output)

If NEEDEV is. TRUE. , thenEVAL1 is computed bWRTSE; otherwise, it
must be set as an input value.

COEF — Real work vector of lengthORDER + 4.
WORK — Real work vector of lengthORDER + 4.
BSI — Real work vector of length*2NORDER + 1.

2. Informational error
Type Code
4 1 The iteration for the eigenvalues did not converge.
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Algorithm

The eigenvalues of Mathieu’s equation are computed MINBE (page 217).
The function values are then computed using a sum of Bessel functions, see
Gradshteyn and Ryzhik (1965), equation 8.661.

Example

In this example, séx =174, = 10),n=0,..., 9 is computed and printed.

1.2

- se, se, Order

i se, sey
712 \\\\\\\\\\\\\\\\\\\\\\\\\
0.0 0.7 0.2 0.3 0.4 0.5
Figure 12-2 Plot of se,(x, g=1)
C Decl are vari abl es
| NTEGER N
PARAMETER (N=10)
(o
| NTEGER K, NOUT
REAL SE(N), CONST, Q X
EXTERNAL CONST, MATSE, UMACH
C Comput e
Q=10.0
X =0.25*CONST('PI")
CALL MATSE (X, Q, N, SE)
C Print the results
CALL UMACH (2, NOUT)
DO 10 K=1, N
WRITE (NOUT,99999) K-1, X, Q, SE(K)
10 CONTINUE

99999 FORMAT (' se sub’, 12, (*, F6.3,",", F6.3,") =, F6.3)
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sub
sub
sub
sub
sub
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Chapter 13: Miscellaneous
Functions

Routines
Spence dilogarithm ..o SPENC 229
Initialize a Chebyshev series..........cccveeiiiieiiiiiee INITS 230
Evaluate a Chebyshev Series...........cuvvvvveveveiiviviiieieiieeieieee, CSEVL 231

Usage Notes

Many functions of one variable can be numerically computed using a Chebyshev
series,

f(x) Y oA Ta() —1sx<1
A Chebyshev seriesis better for numerical computation than a Taylor series since
the Chebyshev polynomials, T,(X), are better behaved than the monomials, x”.

A Taylor series can be converted into a Chebyshev series using an algorithm of
Fields and Wimp, (see Luke (1969), page 292).

Let

— o n
f(x) - znzoanx
be aTaylor series expansion valid for |x| < 1. Define

+%)k(n +l)k£n+k
(2n+1), k!

2w (N
An :FZk:o

where (a), = '(a + K)/I'(a) is Pochhammer’s symbo
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(Note that (). = (a+ k)(a)). Then,
f0=3To(0+ Y  ATh(Xx) 0sxs<1

where
To (%)
are the shifted Chebyshev polynomials,
T, (X) =T, (2x-1)

In an actual implementation of this algorithm, the number of termsin the Taylor
series and the number of termsin the Chebyshev series must both be finite. If the
Taylor seriesis an aternating series, then the error in using only the first M terms
islessthan [§;,. ; |- The error in truncating the Chebyshev seriesto N termsisno

more than
(o]
Z n=N+1 |Cn |

If the Taylor seriesisvalid on [x| < R, then we can write
I n n
f(x) = anOEnR (x/R)

and use &,R" instead of &, in the algorithm to obtain a Chebyshev seriesin x/R
valid for 0 < x < R. Unfortunately, if Rislarge, then the Chebyshev series
converges more slowly.

The Taylor series centered at zero can be shifted to a Taylor series centered at c.
Lett=x-c, s0

0= 140)= 3 gfalt +6" = T 3ot ot
= Yot = 3 ofn(x )"

By interchanging the order of the double sum, it can easily be shown that
A~ P n .
.= n-j
857 ey [ j jc &

By combining scaling and shifting, we can obtain a Chebyshev seriesvalid over
any interval [a, b] for which the original Taylor series converges.

The algorithm can also be applied to asymptotic series,
© -n
f(X) - Zn:OEnX as|x| - ®

by treating the series truncated to M terms as a polynomial in 1/x. The
asymptotic seriesis usualy divergent; but if it is aternating, the error in
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truncating the seriesto M termsislessthan [§;, . | |/RM "1 for RS x < 0.

Normally, as M increases, the error initially decreases to a small value and then

increases without a bound. Therefore, thereis alimit to the accuracy that can be
obtained by increasing M. More accuracy can be obtained by increasing R. The

optimal value of M depends on both the sequence &; and R. For R fixed, the

optimal value of M can be found by finding the value of M at which [§ M|/RM
starts to increase.

Since we want aroutine accurate to near machine precision, the algorithm must
be implemented using somewhat higher precision than is normally used. Thisis
best done using a symbolic computation package.

SPENC/DSPENC (Single/Double precision)

Evaluate a form of Spence’s integral.

Usage
SPENC( X)

Arguments
X — Argument for which the function value is desired. (Input)
SPENC — Function value. (Output)

Algorithm
The Spence dilogarithm functiog(x), is defined to be

s(x) = —j Int=y n|1y—y| d

0

For k| < 1, the uniformly convergent expansion

0 Xk
S(X) = 2k=lk_2
is valid.

Spence’s function can be used to evaluate much more general integral forms. For
example,

0 cx+d ad - bc ad —bc

Cleog(ax+b)dxzIog a(cz+d) _S(a(cz+d))

Example

In this exampleg(0.2) is computed and printed.
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C Decl are vari abl es
| NTEGER NOUT

REAL SPENC, VALUE, X
EXTERNAL SPENC, UMACH
C Conput e
X =0.2
VALUE = SPENC( X)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) X, VALUE
99999 FORMAT (' SPENC(, F6.3,") =, F6.3)
END

Output
SPENC( 0.200) =0.211

INITS/INITDS (Single/Double precision)

Initialize the orthogonal series so the function value is the number of terms
needed to insure the error is no larger than the requested accuracy.

Usage
INITS(OS, NOS, ETA)

Arguments

OS — Vector of lengtiNGs containing coefficients in an orthogonal series.
(Input)
NOS — Number of coefficients ins. (Input)

ETA — Requested accuracy of the series. (Input)
Contrary to the usual conventidfTA is aREAL argument to NI TDS.

INITS — Number of terms needed to insure the error is no largeiEtran
(Output)

Comments

ETA will usually be chosen to be one tenth of machine precision.

Algorithm

Functionl NI TS initializes a Chebyshev series. The funclioih TS returns the

number of terms in the serigsf lengthn needed to insure that the error of the
evaluated series is everywhere less #gs The number of input terms n must

be greater than 1, so that a series of at least one term and an error estimate can be
obtained. In additionETA should be larger than the absolute value of the last
coefficient. If it is not, then all the terms of the series must be used, and no error
estimate is available.
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CSEVL/DCSEVL (Single/Double precision)

Evaluate the N-term Chebyshev series.

Usage
CSEVL(X, CS, N

Arguments
X — Argument at which the series is to be evaluated. (Input)

CS — Vector of lengthN containing the terms of a Chebyshev series. (Input)
In evaluatingCs, only half of the first coefficient is summed.

N — Number of terms in the vectas. (Input)
CSEVL — Function value. (Output)

Comments

Informational error
Type Code
3 7 X is outside the intervat-(.1, +1.1)

Algorithm

FunctionCSEVL evaluates a Chebyshev series whose coefficients are stored in the
arrays of lengthn at the poink. The argumert must lie in the interval

[-1, +1]. Other finite intervals can be linearly transformed to this canonical
interval. Also, the number of terms in the series must be greater than zero but less
than 1000. This latter limit is purely arbitrary; it is imposed in order to guard
against the possibility of a floating point number being passed as an argument for
n.
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Deprecated and Deleted ROULINES..........cccvvviiieiiiieieniinenn, 244

User Errors

IMSL routines attempt to detect user errors and handle them in away that
provides as much information to the user as possible. To do this, we recognize
various levels of severity of errors, and we aso consider the extent of the error in
the context of the purpose of the routine; atrivial error in one situation may be
serious in another. IMSL routines attempt to report as many errors as they can
reasonably detect. Multiple errors present a difficult problem in error detection
because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the routine computes several
output quantities, if some are not computable but most are, an error condition
exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, ssiRlFa1 when“N’ is the

number of equations, the routine prints a message giving the value of the
erroneous input argument(s) and the reason for the erroneous input. The routine
will then cause the user’s program to stop. An error in which the user’s input is
meaningless is the most severe error and is caliedneal error. Multiple

terminal error messages may be printed from a single routine.
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Informational errors

In many cases, the best way to respond to an error condition is simply to correct
the input and rerun the program. In other cases, the user may want to take actions
in the program itself based on errors that occur. An error that may be used as the
basis for corrective action within the program is called an informational error. If
an informational error occurs, a user-retrievable codeis set. A routine can return
at most one informational error for asingle reference to the routine. The codes for
the informational error codes are printed in the error messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which
no user-retrievable code is set. Multiple error messages for this kind of error may
be printed. These errors, which generally are not described in the documentation,
include terminal errors as well asless serious errors. Corrective action within the
calling program is not possible for these errors.

Kinds of Errors and Default Actions

Fivelevels of severity of errors are defined in the MATH/LIBRARY Specid

Functions. Each level has an associated PRINT attribute and a STOP attribute.

These attributes have default settings (Y ES or NO), but they may also be set by

the user. The purpose of having multiple error severity levelsisto provide

independent control of actions to be taken for errors of different severity. Upon

return from an IMSL routine, exactly one error state exists. (A code 0 “error” is
no informational error.) Even if more than one informational error occurs, only
one message is printed (if the PRINT attribute is YES). Multiple errors for which
no corrective action within the calling program is reasonable or necessary result
in the printing of multiple messages (if the PRINT attribute for their severity level
is YES). Errors of any of the severity levels except level 5 may be informational
errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations. Default
attributes: PRINT=NO, STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events
occurring in the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may
require corrective action by the user or calling routine. A warning error
may be issued because the results are accurate to only a few decimal
places, because some of the output may be erroneous but most of the
output is correct, or because some assumptions underlying the analysis
technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT=YES, STOP=NO
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Level 4: Fatal. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling routine must take corrective
action to recover. Default attributes: PRINT=YES, STOP=YES

Level 5: Terminal. A terminal error is serious. It usualy isthe result of an
incorrect specification, such as specifying a negative number as the
number of equations. These errors may also be caused by various
programming errors impossible to diagnose correctly in FORTRAN. The
resulting error message may be perplexing to the user. In such cases, the
user is advised to compare carefully the actual arguments passed to the
routine with the dummy argument descriptions given in the
documentation. Special attention should be given to checking argument
order and data types.

A terminal error is not an informational error because corrective action
within the program is generally not reasonable. In normal usage,
execution isterminated immediately when aterminal error occurs.
Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in
“Routines for Error Handling.”

Errors in Lower-Level Routines

It is possible that a user’'s program may call an IMSL routine that in turn calls a
nested sequence of lower-level IMSL routines. If an error occurs at a lower level
in such a nest of routines and if the lower-level routine cannot pass the
information up to the original user-called routine, then a traceback of the routines
is produced. The only common situation in which this can occur is when an IMSL
routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling
system: (1) to change the default actions, (2) to retrieve the integer code of an
informational error so as to take corrective action, and (3) to determine the
severity level of an error. The routines to useER®ET, | ERCD, andNLRTY,
respectively.

ERSET

Change the default printing or stopping actions when errors of a particular error
severity level occur.

Usage

CALL ERSET (I ERSVR, | PACT, | SACT)
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Arguments

IERSVR — Error severity level indicator. (Input)
If | ERSVR = 0, actions are set for levels 1 to 5L HRSVRis 1 to 5, actions are set
for errors of the specified severity level.

IPACT — Printing action. (Input)

| PACT Action

-1 Do not change current setting(s).
0 Do not print.

1 Print.

2 Restore the default setting(s).
ISACT — Stopping action. (Input)

| SACT Action

-1 Do not change current setting(s).
0 Do not stop.

1 Stop.

2 Restore the default setting(s).

IERCD and N1RTY

The last two routines for interacting with the error handling systeRCD and
N1RTY, arel NTEGER functions and are described in the following material.

| ERCD retrieves the integer code for an informational error. Since it has no
arguments, it may be used in the following way:

| CODE = | ERCIY)
The function retrieves the code set by the most recently called IMSL routine.

NLRTY retrieves the error type set by the most recently called IMSL routine. It is
used in the following way:

| TYPE = NLRTY(1)

I TYPE =1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5,
respectivelyl TYPE = 3 and TYPE = 6 are both warning errors, error severity
level 3. Whilel TYPE = 3 errors are informational erronsgRC() # 0), | TYPE =
6 errors are not informational errotsERCD() = 0).

For software developers requiring additional interaction with the IMSL error
handling system, see Aird and Howell (1991).
Examples

Changes to Default Actions

Some possible changes to the default actions are illustrated below. The default
actions remain in effect for the kinds of errors not included in the cait3aT.
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To turn off printing of warning error messages:
CALL ERSET (3, 0, -1)

To stop if warning errors occur:
CALL ERSET (3, -1, 1)

To print al error messages:
CALL ERSET (0, 1, -1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Automatic Workspace Allocation

FORTRAN subroutines that work with arrays as input and output often require
extra arrays for use as workspace while doing computations or moving around
data. IMSL routines generally do not require the user explicitly to allocate such
arrays for use as workspace. On most systems the workspace allocation is handled
transparently. The only limitation is the actual amount of memory available on the
system.

On some systems the workspace is allocated out of a stack that is passed as a
FORTRAN array in anamed common block WORKSP. A very similar use of a
workspace stack is described by Fox et al. (1978, pages 116—121). (For
compatibility with older versions of the IMSL Libraries, spaceis allocated from
the COVMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For

example, the IMSL routine BSJ S (page 103), which computes the values of first

kind real order Bessel functions, needs arrays for workspace. BSJ S alocates

arrays from the common area and passes them to the lower-level routineB2JS

that does the computations. This scheme for using lower-level routinesis

followed throughout the IMSL Libraries. The names of these routines have a “2”
in the second position (or in the third position in double precision routines having
a “D’ prefix). The user can provide workspace explicitly and call directly the “2-
level” routine, which is documented along with the main routine. In a very few
cases, the 2-level routine allows additional options that the main routine does not
allow.

Prior to returning to the calling program, a routine that allocates workspace
generally deallocates that space so that it becomes available for use in other
routines.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent workspace
allocator is not available.

By default, the total amount of space allocated in the common area for storage of
numeric data is 5000 numeric storage units. (A numeric storage unit is the
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amount of space required to store an integer or areal number. By comparison, a
double precision unit is twice this amount. Therefore, the total amount of space
alocated in the common area for storage of numeric data is 2500 double
precision units.) This spaceis alocated as needed for | NTEGER, REAL, or other
numeric data. For larger problems in which the default amount of workspace is
insufficient, the user can change the allocation by supplying the FORTRAN
statements to define the array in the named common block and by informing the
IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are

COWWON / WORKSP/  RVWKSP

REAL RVKSP(7000)
CALL | WKI N( 7000)

If an IMSL routine attempts to allocate workspace in excess of the amount
available in the common stack, the routine issues a fatal error message that
indicates how much space is needed and prints statements like those above to
guide the user in allocating the necessary amount. The program below uses IMSL
routine BSJ S (page 103) to illustrate this feature.

This routine requires workspace that isjust larger than twice the number of
function values regquested.

| NTEGER N
REAL BS(10000), X, XNU
EXTERNAL BSJS
C Set Paraneters
XNU = .5
X = 1.
N = 6000
CALL BSJS (XNU, X, N, BS)
END
Output
*** TERM NAL ERROR from BSJS. Insufficient workspace for
*x ok current allocation(s). Correct by calling
*x % IVKIN frommain programwith the three
*x ok following statenents: (REGARDLESS OF
*kx PREC! SI ON)
*kx COVMON / WORKSP/  RVWKSP
ok REAL RWKSP(12018)
ok CALL | VKI N(12018)
*** TERM NAL ERROR from BSJS. The workspace requirenent is
*okx based on N =6000.
STOP

In most cases, the amount of workspace is dependent on the parameters of the
problem so the amount needed is known exactly. In afew cases, however, the
amount of workspace is dependent on the data (for example, if it is hecessary to
count all of the unique valuesin avector). Thus, the IMSL routine cannot tell in
advance exactly how much workspace is needed. In such cases, the error message
printed is an estimate of the amount of space required.

238 « Reference Material IMSL MATH/LIBRARY Special Functions



Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate
named common block WKSPCH is provided for character workspace. In most
respects, this stack is managed in the same way as the numeric stack. The default
size of the character workspace is 2000 character units. (A character unit isthe
amount of space required to store one character.) The routine analogousto | WKI N
used to change the default allocation is | WKCI N.

Machine-Dependent Constants

The function subprograms in this section return machine-dependent information
and can be used to enhance portability of programs between different computers.
Theroutines | MACH, AMACH and DMACH describe the computer’s arithmetic. The
routineUVACH describes the input, output and error output unit numbers.
INTEGER FUNCTION IMACH(I)

| MACH retrieves machine integer constants which define the arithmetic used by
the computer.

I MACH(1) = Number of bits per integer storage unit.
| MACH(2) = Number of characters per integer storage unit.

Integers are represented\hdigit, baseA form as

O'Z::/I:O XkAk

whereo is the sign and 8 x, <A, k=0, ..., M. Then,

I MACH(3) = A, the base.
I MACH(4) =M, the number of base-A digits.

| MACH(5) =AM~ 1, the largest integer.

The machine model assumes that floating-point numbers are represdyted in
digit, baseB form as

ExN -k
oB ZK:1 X, B
whereo is the sign and 8 x, <B,k=1,..., NandE,,;, < E<E,,, Then,

| MACH(6) =B the base
I MACH(7) =N the number of basB-digits in single precision
IMACH(8) = E;ip, the smallest single precision exponent

S

IMACH(9) = Emaxs the largest single precision exponent

I MACH(10) =N, the number of basB-digits in double precision
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IMACH(11) the smallest double precision exponent

IMACH(12)

Emind

Emaxd the number of base-B digitsin double precision

REAL FUNCTION AMACH(I)

The function subprogram AMACH retrieves real machine constants that define the
computer’s real or single-precision arithmetic. Such floating-point numbers are
represented ih-digit, baseB form as

E Ng -k

oB ZK:1 X, B

whereo is the sign, & x, <B,k=1,..., Ny and
EminS <Es EmaxS

Note thatB =1 MACH(6), N, = | MACH(7),

Epmin, = IMACH(8), and Eps = IMACH(9)
The IEEE standard for binary arithmetic (see IEEE 1985) specifies NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is thaaMACH(6) return asignaling NaN. On IEEE format
computers that do not support signaling NaN, a quiet NaN is returned. If the
machine does not support a NaN, a special valueAnaH(2) is returned for

AVMACH(6). On computers that do not have a special representation for infinity,
AMACH(2) returns the same value A¥ACH(7).

AVACH is defined by the following table:

AMACH() = BEmins -1 the smallest positive number

AMACH(2) = g Fmacs (l— B—NS) the largest number
AMACH(3) = B_Ns the smallest relative spacing
AMACH(4) = glNs the largest relative spacing
AMACH(5) = log ((B)

AMACH(6) = NaN (signaling not a number)

AMACH(7) = positive machine infinity
AMACH(7) = negative machine infinity

DOUBLE PRECISION FUNCTION DMACH(I)

The function subprogramVACH retrieves real machine constants that define the
computer’s double precision arithmetic. Such double-precision floating-point
numbers are represented\p-digit, baseB form as
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E v Nd -k

oB ZK:1 X, B

whereo isthesign,0<x,<B, k=0, ..., N;and
Emind <Es< Emaxd

Note that B = | MACH(6), N, = | MACH(10),
Enmin, = IMACH(11), and Epg,, = IMACH(12)

The |EEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not anumber) as the result of variousinvalid or ambiguous operations, such as
0/0. Theintent is that DMACH(6) return a signaling NaN. On | EEE format
computers that do not support signaling NaN, aquiet NaN is returned. If the
machine does not support a NaN, a special value near DMACH(2) is returned for
DIVACH(6). On computers that do not have a special representation for infinity,
DVACH(2) = DMACH(7).

DMVACH is defined by the following table:

DMACH(1) = BEmind -1 the smallest positive number
DMACH(2) = BEmaxd (l— B—Nd) the largest number
DMACH(3) = B™M the smallest relative spacing
DMACH(4) = B N the largest relative spacing

DVACH(5) = log; (B)

DVACH(6) = NaN (signaling not a number)
DVACH(7) = positive machine infinity

DMACH(7) = negative machine infinity

LOGICAL FUNCTION IFNAN(X), DIFNAN(DX)

Thelogical function | FNAN checks if the REAL argument X is NaN (not a
number). Similarly, DI FNAN checks if the DOUBLE PRECI SI ON argument DX is
NaN.

The functions | FNAN and DI FNAN are provided to facilitate the transfer of
programs across computer systems. This is because the check for NaN can be
tricky and not portable across computer systems that do not adhere to the IEEE
standard. For example, on computers that support the | EEE standard for binary
arithmetic (see |EEE 1985), NaN is specified as a bit format not equal to itself.
Thus the check is performed as

IFNAN = X .NE. X

On other computers that do not use |EEE floating point format, the check can be
performed in single precision as
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FNAN = X . EQ AMACH( 6)

The function | FNAN or DI FNAN is equivalent to the specification of the function

I snan listed in the Appendix, (IEEE 1985). The following example illustrates the
use of | FNAN. If Xis NaN, amessage is printed instead of X. (IMSL routine
UMACH is used to retrieve the output unit number for printing the message.)

| NTEGER NOUT

REAL AVACH, X
LOG CAL | FNAN
EXTERNAL  AMACH, | FNAN, UMACH
c
CALL UMACH (2, NOUT)
C

X = AVACH( 6)
I F (I FNAN(X)) THEN
WRITE (NOUT,*)’ X is NaN (not a number).”
ELSE
WRITE (NOUT %)’ X =", X
END IF

END

Output
X'is NaN (not a number).

SUBROUTINE UMACH(N, NUNIT)

Routine UMACHets or retrieves the input or output device unit numbers. UMACHIS
set automatically so that the default FORTRAN unit numbers for standard input
and output are used. These unit numbers can be changed by inserting acall to
UMACHi the beginning of the main program that calls MATH/LIBRARY Special
Functions routines. If the input or output numbers are changed from the standard
values, the user should insert an appropriate OPEN statement in the calling
program.

The calling sequence for UMACHIS
CALL UMACH (N, NUNIT)

where NUNIT is the input or output unit number that is either retrieved or set,
depending on which value of Nis selected.

The arguments are summarized by the following table:

N Effect
1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in NUNIT.
-1 Sets the input unit number to NUNIT.

-2 Sets the output unit number to NUNIT.

-3 Sets the error output unit number to NUNIT.

242 « Reference Material IMSL MATH/LIBRARY Special Functions



If the value of N is negative, the input or output unit number isreset to NUNI T. If
the value of Nis positive, the input or output unit number is returned in NUNI T. In
the following example, aterminal error isissued from the MATH/LIBRARY
Special Functions AMACH function since the argument isinvalid. With acall to
UMACH, the error message will be written to alocal file named 'CHECKERR:.

INTEGER N, AMACH

REAL X

EXTERNAL AMACH, UMACH

Set Parameter
N=0

CALL UMACH (-3, 9)

OPEN (UNIT=9,FILE=’CHECKERR)
X = AMACH(N)

END

The output from this example, written to’CHECKERR' is:

*** TERMINAL ERROR 5 from AMACH. The argument must be
ok between 1 and 8 inclusive. N =0

Reserved Names

When writing programs accessing IMSL MATH/LIBRARY Specia Functions,
the user should choose FORTRAN names that do not conflict with names of

IMSL subroutines, functions, or named common blocks, such as the workspace
common block WORKSsee page 237). The user needs to be aware of two types
of name conflicts that can arise. The first type of name conflict occurs when a
name (technically asymbolic name) is not uniquely defined within a program unit
(either amain program or a subprogram). For example, such a name conflict

exists when the nameBSJS is used to refer both to atype REALvariable and to

the IMSL routine BSJS in asingle program unit. Such errors are detected during
compilation and are easy to correct. The second type of name conflict, which can
be more serious, occurs when names of program units and named common blocks
are not unique. For example, such a name conflict would be caused by the user
defining a routine named WORKSBNd also referencing a MATH/LIBRARY
Specia Functions routine that uses the named common block WORKSH.ikewise,
the user must not define a subprogram with the same name as a subprogram in
MATH/LIBRARY Special Functions, that is referenced directly by the user’'s
program or is referenced indirectly by other MATH/LIBRARY Special Functions
subprograms.

MATH/LIBRARY Special Functions consists of many routines, some that are
described in thé&Jser’'s Manualand others that are not intended to be called by

the user and, hence, that are not documented. If the choice of names were
completely random over the set of valid FORTRAN names and if a program uses
only asmall subset of MATH/LIBRARY Specia Functions, the probability of
name conflictsis very small. Since names are usually chosen to be mnemonic,
however, the user may wish to take some precautions in choosing FORTRAN
names.
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Many IMSL names consist of aroot name that may have a prefix to indicate the
type of the routine. For example, the IMSL single precision routine for computing
Bessel functions of the first kind with real order has the name BSJ S, which isthe
root name, and the corresponding IMSL double precision routine has the name
DBSJS. Associated with these two routines are B2J S and DB2JS. BSJS and
DBSJS arelisted in the Alphabetical Index of Routines, but B2JS and DB2JS are
not. The user of BSJS must consider both names BSJ S and B2J S to be reserved;
likewise, the user of DBSJS must consider both names DBSJ S and DB2J S to be
reserved. The names of all routines and named common blocks that are used by
MATH/LIBRARY Special Functions and that do not have a numeral in the
second position of the root name are listed in the Alphabetical Index of Routines.
Some of the routines in this Index are not intended to be called by the user and so
are not documented.

The careful user can avoid any conflicts with IMSL names if the following rules
are observed:

« Do not choose a name that appearsin the Alphabetical Index of Routinesin the
User’'s Manual

¢ Do not choose a name of three or more characters with a numeral in the second or
third position.

« Do not construct a name by replacing the leading ‘C’ of a MATH/LIBRARY
Special Functions routine name withza"For example, users should not select
the name ZCOS” becausecCOS is a MATH/LIBRARY Special Functions
routine.

These simplified rules include many combinations that are, in fact, allowable.
However, if the user selects names that conform to these rules, no conflict will be
encountered.

Deprecated and Deleted Routines

The routines in the following list are being deprecated in Version 2.0 of
MATH/LIBRARY Special Functions. A deprecated routine is one that is no

longer used by anything in the library but is being included in the product for
those users who may be currently referencing it in their application. However, any
future versions of MATH/LIBRARY Special Functions will not include these
routines. If any of these routines are being called within an application, it is
recommended that you change your code or retain the deprecated routine before
replacing this library with the next version. Most of these routines were called by
users only when they needed to set up their own workspace. Thus, the impact of
these changes should be limited.

244 « Reference Material IMSL MATH/LIBRARY Special Functions



G2DF
&IN
G3DF

The following FORTRAN intrinsic functions are no longer supplied by IMSL.

They can all be found in their manufacturer's FORTRAN runtime libraries. If any
change must be made to the user’s application as a result of their removal from
the IMSL Libraries, it is limited to the redeclaration of the function from
“external” to “intrinsic.” Argument lists and results should be identical.

ACOS CEXP
Al NT CLOG
ALOG cos
ALOGLO COSH
ASI N CSIN
ATAN CSQRT
ATAN2 DACCS
CABS DASI N
ccos DATAN

DATAN2
DCCS
DCOsH
DEXP
DI NT
DLOG
DLOGLO
DSI N
DSl NH

DSQRT
DTAN
DTANH
EXP
SIN
SI NH
SQRT
TAN
TANH
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Appendix A: GAMS Index

Description

Thisindex listsroutinesin MATH/LIBRARY Specia Functions by atree-
structured classification scheme known as GAMS. Boisvert, Howe, Kahaner, and
Springmann (1990) give the GAMS classification scheme. The classification
scheme given hereis Version 2.0. The first level of the classification schemeis
denoted by aletter A thru Z asfollows:

Arithmetic, Error Analysis
Number Theory

Elementary and Special Functions
Linear Algebra

Interpolation

Solution of Nonlinear Equations
Optimization

Differentiation and Integration
Differential and Integral Equations
Integral Transforms
Approximation

Statistics, Probability

Simulation, Stochastic Modeling
DataHandling

Symbolic Computation
Computational Geometry
Graphics

Service Routines

Software Development Tools
Other

There are seven levelsin the classification scheme. Subclasses for levels 3, 5, and
7 are denoted by letters™¢hru “w”. Subclasses for levels 2, 4, and 6 are denoted
by the numberg thru 23.

NODOTOZIr A<~ IOMMUO®>

The index given in the following pages lists routines in MATH/LIBRARY
Special Functions within each GAMS subclass. The purpose of the routine appear
alongside the routine name.
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IMSL MATH/LIBRARY Special Functions

ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)

Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)

Bl NOM Evaluate the binomial coefficient.

FAC Evaluate the factorial of the argument.

Powers, roots, reciprocals

CBRT Evaluate the cube root.

CCBRT Evaluate the complex cube root.

Polynomials

Orthogonal

INITS Initialize the orthogonal series so the function value is the
number of terms needed to insure the error is no larger
than the requested accuracy.

Chebyshev, Legendre

CSEVL Evaluate the N-term Chebyshev series.

Elementary transcendental functions

Trigonometric, inverse trigonometric

CACCSs Evaluate the complex arc cosine.

CARG Evaluate the argument of a complex number.

CASI N Evaluate the complex arc sine.

CATAN Evaluate the complex arc tangent.

CATAN2 Evaluate the complex arc tangent of aratio.

ccor Evaluate the complex cotangent.

COSDG Evaluate the cosine for the argument in degrees.

COT Evaluate the cotangent.

SI NDG Evaluate the sine for the argument in degrees.
Exponential, logarithmic

ALNREL Evaluate the natural logarithm of one plus the argument.
CEXPRL Evaluate the complex exponential function factored from
first order.

CLNREL Evaluate the principal value of the complex natural
logarithm of one plus the argument.

CLOGL0 Evaluate the principal value of the complex common
logarithm.

EXPRL Evaluate the exponential function factored from first

order, (EXP(X) — 1.0)/X.

Hyperbolic, inverse hyperbolic
ACOSH Evaluate the arc hyperbolic cosine.
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ASI NH Evaluate the arc hyperbolic sine.

ATANH Evaluate the arc hyperbolic tangent.

CACOSH Evaluate the complex arc hyperbolic cosine.
CASI NH Evaluate the complex arc hyperbolic sine.
CATANH Evaluate the complex arc hyperbolic tangent.
CCOsH  Evaluate the complex hyperbolic cosine.

CSI NH  Evaluate the complex hyperbolic sine.

CTAN  Evaluate the complex tangent.

CTANH Evaluate the complex hyperbolic tangent.

C5........ Exponential and logarithmic integrals

AL| Evaluate the logarithmic integral .
CHI Evaluate the hyperbolic cosine integral.
c Evaluate the cosine integral.Cl N Evaluate afunction

closely related to the cosine integral.

CINH  Evaluate afunction closely related to the hyperbolic cosine
integral.

El Evaluate the exponential integral for arguments greater
than zero and the Cauchy principal value of the integral for
arguments | ess than zero.

El Evaluate the exponential integral for arguments greater
than zero and the Cauchy principal value for arguments
less than zero.

ENE Evaluate the exponential integral of integer order for
arguments greater than zero scaled by EXP(X).

SHI Evaluate the hyperbolic sine integral.

Sl Evaluate the sine integral .

Cra...... Gamma, log gamma, reciprocal gamma

ALGAMS Return the logarithm of the absolute value of the gamma
function and the sign of gamma.

ALNGAM Evaluate the logarithm of the absolute value of the gamma
function.

CGAMVA Evaluate the complex gamma function.

CGAMR Evaluate the reciprocal complex gamma function.

CLNGAM Evaluate the complex natural logarithm of the gamma
function.

GAMVA  Evaluate the complete gamma function.

GAMR  Evaluate the reciprocal gamma function.

POCH Evaluate ageneralization of Pochhammer’'s symbol.

POCHL Evaluate a generalization of Pochhammer’s symbol starting
from the first order.

C7b...... Beta, log beta
ALBETA Evaluate the natural logarithm of the complete beta
function for positive arguments.

IMSL MATH/LIBRARY Special Functions Gams Index * A-3



BETA  Evaluate the complete beta function.

CBETA Evaluate the complex complete beta function.

CLBETA Evaluate the complex logarithm of the complete beta
function.

Crce....... Psi function
CPSI Evaluate the logarithmic derivative of the gamma function
for a complex argument.
PSI Evaluate the logarithmic derivative of the gamma function.

Cte....... Incomplete gamma

CHI DF Evaluate the chi-squared distribution function.

CHI I N Evaluate the inverse of the chi-squared distribution
function.

GAMDF  Evaluate the gamma distribution function.

GAM  Evaluate the incomplete gamma function.

GAM C Evaluate the complementary incomplete gamma function.

GAM T Evaluate the Tricomi form of the incomplete gamma
function.

Crf..... Incomplete beta

BETAI  Evaluate the incomplete beta function ratio.
BETDF Evaluate the beta probability distribution function.
BETI N Evauate theinverse of the beta distribution function.

C8..... Error functions

C8a....... Error functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluate the standard normal (Gaussian) distribution
function.

ANORI N Evaluate the inverse of the standard normal (Gaussian)
distribution function.

CERFE Evaluate the complex scaled complemented error function.

ERF Evaluate the error function.

ERFC  Evaluate the complementary error function.

ERFCE Evaluate the exponentially scaled complementary error
function.

ERFCI  Evaluate the inverse complementary error function.

ERFI Evaluate the inverse error function.

C8b...... Fresnel integrals
FRESC Evaluate the cosine Fresnel integral.
FRESS Evaluate the sine Fresnel integral.

Csc....... Dawson'’s integral
DAWS Evaluate Dawson function.
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C10...... Bessel functions

Cloa...J Y, HD: H®

C10al .. Real argument, integer order

BSJO Evaluate the Bessel function of thefirst kind of order zero.

BSJ1  Evaluate the Bessel function of the first kind of order one.

BSINS Evaluate a sequence of Bessel functions of the first kind
with integer order and real arguments.

BSY0O Evaluate the Bessdl function of the second kind of order
Zero.

BSY1 Evaluate the Bessd function of the second kind of order
one.

C10a2 .. Complex argument, integer order
CBJNS Evaluate a sequence of Bessal functions of the first kind
with integer order and complex arguments.

C10a3 .. Real argument, real order
BSJS Evaluate a sequence of Bessel functions of the first kind
with real order and real positive arguments.
BSYS Evaluate a sequence of Besseal functions of the second kind
with real nonnegative order and real positive arguments.

C10&4 .. Complex argument, real order
CBJS Evaluate a sequence of Bessel functions of the first kind
with real order and complex arguments.
CBYS Evaluate a sequence of Bessel functions of the second kind
with real order and complex arguments.

C10b...1,K

C10bl .. Real argument, integer order

BSI0 Evaluate the modified Bessel function of the first kind of
order zero.

BSI OE Evaluate the exponentially scaled modified Bessel function
of the first kind of order zero.

BSI 1  Evauate the modified Bessel function of the first kind of
order one.

BSI 1E Evaluate the exponentially scaled modified Bessel function
of the first kind of order one.

BSI NS Evaluate a sequence of Modified Bessel functions of the
first kind with integer order and real arguments.

BSKO  Evaluate the modified Bessel function of the third kind of
order zero.

BSKOE Evaluate the exponentially scaled modified Bessel function
of the third kind of order zero.

BSK1  Evaluate the modified Bessel function of the third kind of
order one.
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BSK1E Evaluate the exponentially scaled modified Bessel function
of the third kind of order one.

C10b2 .. Complex argument, integer order

CBI NS Evaluate a sequence of Modified Bessel functions of the
first kind with integer order and complex arguments.

C10b3 Real argument, real order

BSI ES Evaluate a sequence of exponentially scaled Modified
Bessdl functions of the first kind with nonnegative real
order and real positive arguments.

BSIS Evaluate a sequence of Modified Bessel functions of the
first kind with real order and real positive arguments.

BSKES Evaluate a sequence of exponentially scaled modified
Bessel functions of the third kind of fractional order.

BSKS Evaluate a sequence of modified Bessel functions of the
third kind of fractional order.

C10b4 .. Complex argument, real order
CBI'S Evaluate a sequence of Modified Bessel functions of the
first kind with real order and complex arguments.
CBKS Evaluate a sequence of Modified Bessel functions of the
second kind with real order and complex arguments.

C10c..... Kelvin functions

AKElI 0 Evaluate the Kelvin function of the second kind, kei, of
order zero.

AKEl 1 Evauate the Kelvin function of the second kind, kei, of
order one.

AKEI PO Evaluate the Kelvin function of the second kind, kei, of
order zero.

AKERO Evaluate the Kelvin function of the second kind, ker, of
order zero.

AKER1 Evaluate the Kelvin function of the second kind, ker, of
order one.

AKERPO Evaluate the derivative of the Kelvin function of the
second kind, ker, of order zero.

BEI O Evaluate the Kelvin function of thefirst kind, bei, of order
Zero.

BEI 1  Evauate the Kelvin function of the first kind, bei, of order
one.

BEI PO Evaluate the derivative of the Kelvin function of the first
kind, bei, of order zero.

BERO  Evaluate the Kelvin function of the first kind, ber, of order
Zero.

BER1 Evaluate the Kelvin function of the first kind, ber, of order
one.
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BERPO Evauate the derivative of the Kelvin function of the first
kind, ber, of order zero.

C10d.... Airy and Scorer functions
Al Evaluate the Airy function.
Al D Evaluate the derivative of the Airy function.
Al DE  Evauate the exponentially scaled derivative of the Airy

function.

Al E Evaluate the exponentially scaled Airy function.

BI Evaluate the Airy function of the second kind.

BI D Evaluate the derivative of the Airy function of the second
kind.

BI DE  Evaluate the exponentially scaled derivative of the Airy
function of the second kind.

BI E Evaluate the exponentially scaled Airy function of the
second kind.

Ci4 ... Elliptic integrals

CEJCN Evaluate the complex Jacobi elliptic integral cn(z, m).

CEJDN Evaluate the complex Jacobi elliptic integral dn(z, m).

CEJSN Evaluate the complex Jacobi elliptic function sn(z, m).

EJCN  Evaluate the Jacobi dliptic function cn(x, m).

EJDN  Evaluate the Jacobi eliptic function dn(x, m).

EJSN  Evaluate the Jacobi éliptic function sn(x, m).

ELE Evaluate the complete elliptic integral of the second kind
E(X).

ELK Evaluate the complete elliptic integral of the kind K(x).

ELRC Evaluate an elementary integral from which inverse
circular functions, logarithms and inverse hyperbolic
functions can be computed.

ELRD Evaluate Carlson’s incomplete elliptic integral of the
second kindRD(X, Y, Z).

ELRF  Evaluate Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, 2).

ELRJ  Evaluate Carlson’s incomplete elliptic integral of the third
kind R1(X, Y, Z, RHO).

Cl15...... Weierstrass elliptic functions

CcweL  Evaluate the WeierstraBsfunction in the lemniscat case
for complex argument with unit period parallelogram.

CWPLD Evaluate the first derivative of the Weierstr&sfunction
in the lemniscatic case for complex argum with unit period
parallelogram.

CWPQ Evaluate the Weierstragsfunction in the equianharmonic
case for complex argument with unit period parallelogram.
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CWPQD Evauate the first derivative of the Weierstrass P-function
in the equianharmonic case for complex argument with unit
period parallelogram.

C17...... Mathieu functions
MATCE Evaluate a sequence of even, periodic, integer order, real
Mathieu functions.
MATEE Evaluate the eigenvalues for the periodic Mathieu
functions.
MATSE Evaluate a sequence of odd, periodic, integer order, real
Mathieu functions.

C19..... Other special functions
SPENC Evaluate aform of Spence’s integral.

Lecoerrene STATISTICS, PROBABILITY
L5......... Function evaluatiorsdarch also class C)
L5a....... Univariate

L5al..... Cumulative distribution functions, probability density functions
GCDF  Evaluate a general continuous cumulative distribution
function given ordinates of the density.

L5alb... Beta, binomial
BETDF Evaluate the beta probability distribution function.
BI NDF Evaluate the binomial distribution function.
BI NPR Evaluate the binomial probability function.
CH DF Evaluate the chi-squared distribution function.
CSNDF Evaluate the noncentral chi-squared distribution function.

L5alf.... F distribution
FDF Evaluate thd= distribution function.

L5alg... Gamma, general, geometric
GAMDF Evaluate the gamma distribution function.

L5alh... Halfnormal, hypergeometric
HYPDF Evaluate the hypergeometric distribution function.
HYPPR Evaluate the hypergeometric probability function.

L5alk... KendalF statistic, Kolmogorov-Smirnov
AKS1DF Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness of fX" or D™ test statistic
based on continuous data for one sample.

AKS2DF Evaluate the distribution function of the Kolmogorov-
Smirnov goodness of fid test statistic based on
continuous data for two samples.
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L5aln... Negative binomial, normal
ANORDF Evaluate the standard normal (Gaussian) distribution
function.

L5alp... Pareto, Poisson
PO DF Evauate the Poisson distribution function.
PO PR Evaluate the Poisson probability function.

L5ait.... t distribution
TDF Evaluate the Studenttsdistribution function.
TNDF  Evaluate the noncentral Studerttdistribution function.

L5a2..... Inverse cumulative distribution functions, sparsity functions
GCIN  Evaluate the inverse of a general continuous cumulative
distribution function given ordinates of the density.

L5a2b... Beta, binomial
BETI N Evaluate the inverse of the beta distribution function.

L5a2c... Cauchy, chi-squared
CHI I N Evaluate the inverse of the chi-squared distribution
function.

L5a2f ...F distribution
FI N Evaluate the inverse of tliredistribution function.

L5a2n... Negative binomial, normal, normal scores
ANCRI N Evaluate the inverse of the standard normal (Gaussian)
distribution function.

L5a2t....t distribution
TIN Evaluate the inverse of the Studentiistribution
function.

L5b ...... Multivariate
L5b1 .... Cumulative distribution functions, probability density functions

L5b1n... Normal
BNRDF Evaluate the bivariate normal distribution function.

N...... DATA HANDLING
N1..... Input, output
| FNAN.. Check if a value is NaN (not a number).

N4........ Storage management (e.g., stacks, heaps, trees)
I VKCI N Initialize bookkeeping locations describing the character
workspace stack.
I VKI N Initialize bookkeeping locations describing the workspace
stack.

R...... SERVICE ROUTINES
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R1..... M achine-dependent constants
AMACH Retrieve single-precision machine constants.
DVACH Retrieve double precision machine constants.
| FNAN Check if avalueisNaN (not a number).
| MACH Retrieve integer machine constants.
UVMACH Set or retrieve input or output device unit numbers.

R3....... Error handling
ERSET Set error handler default print and stop actions.
| ERCD Retrievethe code for an informational error.
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Appendix B: Alphabetical Summary
of Routines

IMSL MATH/LIBRARY Special Functions

ACCOSH 23 Evaluate the arc hyperbolic cosine.

Al 133 Evaluatethe Airy function.

Al D 135 Evaluatethe derivative of the Airy function.

Al DE 139 Evaluatethe exponentially scaled derivative of the Airy
function.

AlE 137 Evaluatethe exponentially scaled Airy function.

AKEI 0 124  Evauate the Kevin function of the second kind, kei, of
order zero.

AKEI 1 130 Evauate the Kevin function of the second kind, kei, of
order one.

AKEI PO 127 Evauate the Kevin function of the second kind, kei, of
order zero.

AKERO 123 Evaluate the Kévin function of the second kind, ker, of
order zero.

AKER1 130 Evaluate the Kevin function of the second kind, ker, of
order one.

AKERPO 126 Evauate the derivative of the Kelvin function of the second
kind, ker, of order zero.

AKS1DF 181 Evaluate the distribution function of the one-sided
K olmogorov-Smirnov goodness of fit D" or D test statistic
based on continuous data for one sample.

AKS2DF 184 Evaluatethe distribution function of the Kolmogorov-
Smirnov goodness of fit D test statistic based on continuous
data for two samples.

ALBETA 64 Evaluate the natural logarithm of the complete beta function
for positive arguments.
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ALGANMS 52 Return the logarithm of the absolute value of the gamma
function and the sign of gamma.

ALI 31 Evaluate the logarithmic integral .

ALNGAM 49 Evaluate the logarithm of the absolute value of the gamma
function.

ALNREL 6 Evaluate the natural logarithm of one plus the argument.

AMACH 240 Retrieve single-precision machine constants.
ANORDF 186 Evauate the standard normal (Gaussian) distribution
function.

ANORI N 188 Evauate the inverse of the standard normal (Gaussian)
distribution function.

AS| NH 21 Evaluate the arc hyperbolic sine.

ATANH 24 Evaluate the arc hyperbolic tangent.

BEI 0 122  Evauate the Kelvin function of the first kind, bei, of order
Zero.

BEI 1 129 Evauate the Kelvin function of the first kind, bei, of order
one.

BEI PO 125 Evauate the derivative of the Kelvin function of the first
kind, bei, of order zero.

BERO 121  Evauate the Kelvin function of the first kind, ber, of order
ZEro.

BER1 128 Evaluate the Kelvin function of the first kind, ber, of order
one.

BERPO 124  Evauate the derivative of the Kelvin function of the first
kind, ber, of order zero.

BETA 62 Evaluate the compl ete beta function.

BETAI 66 Evaluate the incomplete beta function ratio.

BETDF 189 Evauate the beta probability distribution function.

BETI N 191 Evaluate the inverse of the beta distribution function.

BI 134  Evauate the Airy function of the second kind.

BI D 136 Evauate the derivative of the Airy function of the second
kind.

BI DE 140 Evauate the exponentially scaled derivative of the Airy

function of the second kind.
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Bl E

Bl NDF
Bl NOM
Bl NPR
BNRDF
BSI 0

BSI OE

BSI 1

BSI 1E

BSI ES

BSI NS

BSI S

BSJO
BSJ1
BSINS

BSJS

BSKO

BSKOE

BSK1

BSK1E

138

172
43
173
192
89

95

91

95

107

100

106

86
98

103

92

96

93

97

Evaluate the exponentially scaled Airy function of the
second kind.

Evaluate the binomia distribution function.
Evaluate the binomial coefficient.

Evaluate the binomial probability function.
Evaluate the bivariate normal distribution function.

Evaluate the modified Bessel function of the first kind of
order zero.

Evaluate the exponentially scaled modified Bessel function
of the first kind of order zero.

Evaluate the modified Bessel function of the first kind of
order one.

Evaluate the exponentially scaled modified Bessel function
of the first kind of order one.

Evaluate a sequence of exponentially scaled modified Bessel
functions of the first kind with nonnegative real order and
real positive arguments.

Evaluate a sequence of modified Bessel functions of the first
kind with integer order and real arguments.

Evaluate a sequence of modified Bessel functions of the first
kind with real order and real positive arguments.

Evaluate the Besseal function of the first kind of order zero.
Evaluate the Bessel function of the first kind of order one.

Evaluate a sequence of Bessel functions of the first kind with
integer order and real arguments.

Evaluate a sequence of Bessel functions of the first kind with
real order and real positive arguments.

Evaluate the modified Bessel function of the third kind of
order zero.

Evaluate the exponentially scaled modified Bessel function
of the third kind of order zero.

Evaluate the modified Bessel function of the third kind of
order one

Evaluate the exponentially scaled modified Bessel function
of the third kind of order one.
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BSKES

BSKS

BSYO

BSY1
BSYS

CACOs
CACOSH

CASIN
CASI NH
CATAN
CATAN2
CATANH
CBETA
CBI NS

CBI S

CBINS

CBJS

CBKS

CBYS

CCBRT
CCCSsH

110

109

87

88
105

16
24

15
22
17
18
25
63
102

115

99

112

117

113

20
12

Evaluate a sequence of exponentially scaled modified Bessel
functions of the third kind of fractional order.

Evaluate a sequence of modified Bessel functions of the third
kind of fractional order.

Evaluate the Bessel function of the second kind of order
zero.

Evaluate the Bessel function of the second kind of order one.

Evaluate a sequence of Bessel functions of the second kind
with real nonnegative order and real positive arguments.

Evaluate the complex arc cosine.

Evaluate the complex arc hyperbolic cosine.
Evaluate the argument of a complex number.
Evaluate the complex arc sine.

Evaluate the complex arc hyperbolic sine.
Evaluate the complex arc tangent.

Evaluate the complex arc tangent of aratio.
Evaluate the complex arc hyperbolic tangent.
Evaluate the complex complete beta function.

Evaluate a sequence of modified Bessel functions of the first
kind with integer order and complex arguments.

Evaluate a sequence of modified Bessel functions of the first
kind with real order and complex arguments.

Evaluate a sequence of Bessel functions of the first kind with
integer order and complex arguments.

Evaluate a sequence of Bessel functions of the first kind with
real order and complex arguments.

Evaluate a sequence of modified Bessel functions of the third
kind with real order and complex arguments.

Evaluate the cube root

Evaluate a sequence of Bessel functions of the second kind
with real order and complex arguments.

Evaluate the complex cube root.
Evaluate the complex hyperbolic cosine.

Evaluate the complex cotangent.
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CEJCN
CEJDN
CEJSN
CERFE
CEXPRL

CGAMVA
CGAMR

CHI DF
CH IN

CI'N
CI NH

CLBETA

CLNGAM

CLNREL

CLOGLO0

COsDG

CPSI

CSEVL
CSI NH
CSNDF
CTAN

CTANH

162
164
159
75

48
37
194
196

35
38

65

51

11
58

231
19
197
10
20

Evaluate the complex Jacobi elliptic integral cn(z, m).
Evaluate the complex Jacobi eliptic integral dn(z, m).
Evaluate the complex Jacobi elliptic function sn(z, m).
Evaluate the complex scaled complemented error function.

Evaluate the complex exponential function factored from
first order.

Evaluate the complex gamma function.

Evaluate the reciprocal complex gamma function.

Evaluate the hyperbolic cosine integral.

Evaluate the chi-squared distribution function.

Evaluate the inverse of the chi-squared distribution function.
Evaluate the cosine integral.

Evaluate afunction closely related to the cosine integral.

Evaluate a function closely related to the hyperbolic cosine
integral.

Evaluate the complex logarithm of the complete beta
function.

Evaluate the complex natural logarithm of the gamma
function.

Evaluate the principal value of the complex natural logarithm
of one plus the argument.

Evaluate the principal value of the complex common
logarithm.

Evaluate the cosine for the argument in degrees.
Evaluate the cotangent.

Evaluate the logarithmic derivative of the gamma function
for a complex argument.

Evaluate the N-term Chebyshev series.

Evaluate the complex hyperbolic sine.

Evaluate the noncentral chi-squared distribution function.
Evaluate the complex tangent.

Evaluate the complex hyperbolic tangent.
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CWPL

CWPLD

CWPQ

CWPQD

DAVE

DVACH
E1

El

EJCN
EJDN
EJSN
ELE

ELK

ELRC

ELRD

ELRF

ELRJ

ENE

ERF

ERFC

154

155

156

157

79

240
29

28

160
163
158
147

145

151

149

148

150

30

70

71

Evaluate the Welerstrass P-function in the lemniscat case for
complex argument with unit period parallelogram.

Evaluate the first derivative of the Weierstrass P-function in
the lemniscatic case for complex argum with unit period
parallelogram.

Evaluate the Weierstrass P-function in the equianharmonic
case for complex argument with unit period parallelogram.

Evaluate the first derivative of the Weierstrass P-function in
the eguianharmonic case for complex argument with unit
period parallelogram.

Evaluate Dawson function.
Retrieve double precision machine constants.

Evaluate the exponentia integral for arguments greater than
zero and the Cauchy principal value of the integral for
arguments | ess than zero.

Evaluate the exponential integral for arguments greater than
zero and the Cauchy principal value for argumentsless than
zero.

Evaluate the Jacobi eliptic function cn(x, m).
Evaluate the Jacobi elliptic function dn(x, m).
Evaluate the Jacobi elliptic function sn(x, m).

Evaluate the complete elliptic integral of the second kind
E(X).

Evaluate the complete elliptic integral of the kind K(x).

Evaluate an elementary integral from which inverse circular
functions, logarithms and inverse hyperbolic functions can
be computed.

Evaluate Carlson’s incomplete elliptic integral of the second
kind RD(X, Y, Z).

Evaluate Carlson’s incomplete elliptic integral of the first
kind RF(X, Y, 2).

Evaluate Carlson’s incomplete elliptic integral of the third
kind RI(X, Y, Z, RHO).

Evaluate the exponential integral of integer order for
arguments greater than zero scale@xg(Xx).

Evaluate the error function.

Evaluate the complementary error function.
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ERFCE 73 Evaluate the exponentially scaled complementary error

function.

ERFCI 77 Evaluate the inverse complementary error function.

ERFI 76 Evaluate the inverse error function.

ERSET 235  Set error handler default print and stop actions.

EXPRL 4 Evaluate the exponential function factored from first order,
(EXP(X) = 1.0)/X.

FAC 42 Evaluate the factorial of the argument.

FDF 200 Evaluate the F distribution function.

FI N 201 Evauatetheinverse of the F distribution function.

FRESC 81 Evaluate the cosine Fresnel integral .

FRESS 81 Evaluate the sine Fresnel integral.

GANDF 203 Evaluate the gammadistribution function.

GAM 53 Evaluate the incomplete gamma function.

GAM C 55 Evaluate the complementary incomplete gamma function.

GAM T 56 Evaluate the Tricomi form of the incomplete gamma
function.

GAMVA 44 Evaluate the complete gamma function.

GAMR 48 Evaluate the reciprocal gamma function.

GCDF 210 Evauate agenera continuous cumulative distribution
function given ordinates of the density.

GCI N 212  Evauatetheinverse of ageneral continuous cumulative
distribution function given ordinates of the density.

HYPDF 175 Evauate the hypergeometric distribution function.

HYPPR 177  Evauate the hypergeometric probability function.

| ERCD 236 Retrievethe code for an informational error

| FNAN 241 Check if avalueisNaN (not a number).

| MACH 239 Retrieve integer machine constants.

INITS 230 Initialize the orthogonal series so the function value isthe
number of terms needed to insure the error is no larger than
the requested accuracy.

| VKCI N 239 Initialize bookkeeping locations describing the character
workspace stack.
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I VKI'N

MATCE

MATEE
MATSE

N1RTY

POCH
POCH1

PO DF
PO PR
PSI
SHI

S

S| NDG
SPENC
TDF
TIN
TNDF
UVACH

238

220

217
223

236

59
61

178
180
57
36
33
13
229
205
207
208
242

Initialize bookkeeping locations describing the workspace
stack.

Evaluate a sequence of even, periodic, integer order, rea
Mathieu functions.

Evaluate the eigenvalues for the periodic Mathieu functions.

Evaluate a sequence of odd, periodic, integer order, rea
Mathieu functions

Retrieve an error type for the most recently called IMSL
routine.

Evaluate a generalization of Pochhammer’s symbol.

Evaluate a generalization of Pochhammer’s symbol starting
from the first order.

Evaluate the Poisson distribution function.

Evaluate the Poisson probability function.

Evaluate the logarithmic derivative of the gamma function.
Evaluate the hyperbolic sine integral.

Evaluate the sine integral.

Evaluate the sine for the argument in degrees.

Evaluate a form of Spence’s integral.

Evaluate the Studentslistribution function.

Evaluate the inverse of the Studenhtisstribution function.
Evaluate the noncentral Studemtstribution function.

Set or retrieve input or output device unit numbers.
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Product Support

Contacting Visual Numerics Support

Users within support warranty may contact Visual Numerics regarding the use of
the IMSL Libraries. Visual Numerics can consult on the following topics:

e Clarity of documentation

e Possible Visual Numerics-related programming problems

e Choiceof IMSL Librariesfunctions or procedures for a particular problem
e Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation

Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

» for PC support, pcsuppor t @oust on. vni . com

»  for non-PC support, suppor t @oust on. vni . com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your local E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics.
Include your serial (or license) number

Include the product name and version number: IMSL Numerical Libraries
Version 3.0

3. Include compiler and operating system version humbers

4. Include the name of the routine for which assistanceis needed and a description
of the problem
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Index

A

Airy function 135

derivative 137

exponentially scaled 139
derivative 140

second kind 136
derivative 138
exponentially scaled 140
exponentially scaled derivative

140

B

Bessel functions 83
first kind
integer order 98, 99
order one 86
order zero 84
real order 103, 112
modified
exponentially scaled 95, 96, 97,
107, 110
first kind, integer order 100, 102
first kind, nonnegative real order
107
first kind, order one 91, 95
first kind, order zero 89, 95
first kind, real order 106, 115
second kind, real order 117
third kind, fractional order 109,
110
third kind, order one 93, 97
third kind, order zero 92, 96
second kind
order one 88
order zero 87
real nonnegative order 105
real order 113

beta functions
complete 65
complex 66
complex logarithm 65
natural logarithm 64
incompl ete 66
binomial coefficient 43

C

Cauchy principa value 28, 29
character workspace 239
characteristic values 217
Chebyshev series 227, 231
common blocks vii
complex numbers
evaluating 1
cosine
arc
hyperbolic 24
complex 16
hyperbolic 20
hyperbolic
complex arc 24
in degrees 14
integrals 34, 35
hyperbolic 37, 38
cotangent
complex 12
evaluating 11
cube roots
complex 3
evaluating 2
cumulative distribution functions
(CDF) 169

D

Dawson'’s function 79
distribution functions 167
beta 189
inverse 191
binomial 172
bivariate normal 192
chi-squared 194
inverse 196
noncentral 197
cumulative (CDF) 168
F 200
inverse 201
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gamma 203

genera continuous cumulative 210
inverse 212

hypergeometric 175

Kolmogorov-Smirnov goodness of

fit 184

Poisson 178

standard normal (Gaussian) 186
inverse 188

Student’ st 205
noncentral 208

double precision v

E

eigenvalues 217
elementary functionsiv, 1
elliptic functions 153
dliptic integrals 144
complete 145
second kind 147
first kind
Carlson’s incomplete 148
second kind
Carlson’s incomplete 149
third kind
Carlson’s incomplete 150
Erlang distribution 204
error functions 70
complementary 71
complex scaled 75
exponentially scaled 73
inverse 76
inverse 78
error-handling vii
errors 233
alert 172, 234
fatal 235
informational 234
note 172, 234
severity level vii
terminal 172, 233, 235
warning 172, 234
exponential functions
complex 5
first order 4, 5
exponential integrals 28, 29, 30
of integer order 30

F

factorial 42

Fresnal integrals 69, 70
cosine 81
sine 81

G

gamma distributions
standard 168
gamma functions 41
complete 44
complex 46
reciprocal 48
incomplete 53
complementary 55
Tricomi form 56
logarithmic derivative 57, 58
reciprocal 48

H

hyperbolic functions iv, 10

J

Jacobi elliptic function 160, 163,
165
complex 159
Jacobi elliptic integral
complex 162, 164

K

Kelvin function
first kind
order one 128
order zero 121, 122
second kind
order one 130
order zero 123, 124
Kolmogorov-Smirnov goodness of
fit D-test statistic 184
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L

logarithmic integrals 31
logarithms
complex 65
common 6
natural 7, 51
for gamma functions 49, 51, 52,
natural 6, 64

M

machine dependent constants 239
Mathieu functions 217

even 220

integer order 220, 223

odd 223

periodic 217, 220, 223

real 220, 223

N

naming conventions v
NaN 240, 241

O

orthogonal series 230
overflow vi,

P

Pochhammer’s symbol 59, 61, 227
printing results vii
probability density function (PDF)
170
probability distribution functions
167
inverses 167
probability functions 169
binomial 173
hypergeometric 177
Poisson 180

R

reserved names 243

S

sine
arc
hyperbolic 22
complex
arc 15
hyperbolic 19
hyperbolic
complex arc 22
in degrees 13
integrals 33
hyperbolic 36
single precision iii
Spence’s integral 229

T

tangent
arc
hyperbolic 24
complex 10
arc 17
arc of a ratio 18
hyperbolic 20
hyperbolic
complex arc 25
Taylor series 227
trigonometric functions iv, 9

U

underflow vi
user interface iii

W

Weierstrass’ function
equianharmonic case 156, 157
lemniscatic case 154, 155

work arrays vii

workspace allocation 237
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